[FFmpeg-devel] avfilter: Add vmaf filter

Submitted by Ashish Singh on Aug. 23, 2017, 7:28 p.m.

Details

Message ID 1503516533-7623-1-git-send-email-ashk43712@gmail.com
State New
Headers show

Commit Message

Ashish Singh Aug. 23, 2017, 7:28 p.m.
From: Ashish Singh <ashk43712@gmail.com>

Hi, this is vmaf filter. It fuses the scores of previous metrics adm, motion and vif
using svm algorithm. It's different from libvmaf filter because it has a very little
external dependency (only one svm model file).
Currently it supports only one model which can be extended later for other models.
I have added the model file inside libavfilter/data/ so that it can run successfully.
There is still a bit of work left to do like changing each filter from float
to integer. It's in progress along with SIMD optimizations.

Signed-off-by: Ashish Singh <ashk43712@gmail.com>
---
 Changelog                              |   1 +
 doc/filters.texi                       |  38 ++
 libavfilter/Makefile                   |   1 +
 libavfilter/allfilters.c               |   1 +
 libavfilter/data/vmaf_v0.6.1.pkl.model | 218 ++++++++
 libavfilter/vf_vmaf.c                  | 945 +++++++++++++++++++++++++++++++++
 libavfilter/vmaf.h                     | 138 +++++
 7 files changed, 1342 insertions(+)
 create mode 100644 libavfilter/data/vmaf_v0.6.1.pkl.model
 create mode 100644 libavfilter/vf_vmaf.c
 create mode 100644 libavfilter/vmaf.h

Comments

Michael Niedermayer Aug. 23, 2017, 11:41 p.m.
On Thu, Aug 24, 2017 at 12:58:53AM +0530, Ashish Pratap Singh wrote:
> From: Ashish Singh <ashk43712@gmail.com>
> 
> Hi, this is vmaf filter. It fuses the scores of previous metrics adm, motion and vif
> using svm algorithm. It's different from libvmaf filter because it has a very little
> external dependency (only one svm model file).
> Currently it supports only one model which can be extended later for other models.
> I have added the model file inside libavfilter/data/ so that it can run successfully.
> There is still a bit of work left to do like changing each filter from float
> to integer. It's in progress along with SIMD optimizations.
> 
> Signed-off-by: Ashish Singh <ashk43712@gmail.com>
> ---
>  Changelog                              |   1 +
>  doc/filters.texi                       |  38 ++
>  libavfilter/Makefile                   |   1 +
>  libavfilter/allfilters.c               |   1 +
>  libavfilter/data/vmaf_v0.6.1.pkl.model | 218 ++++++++
>  libavfilter/vf_vmaf.c                  | 945 +++++++++++++++++++++++++++++++++
>  libavfilter/vmaf.h                     | 138 +++++
>  7 files changed, 1342 insertions(+)
>  create mode 100644 libavfilter/data/vmaf_v0.6.1.pkl.model
>  create mode 100644 libavfilter/vf_vmaf.c
>  create mode 100644 libavfilter/vmaf.h

fails to build

CC      libavfilter/vf_vmaf.o
libavfilter/vf_vmaf.c:36:17: fatal error: adm.h: No such file or directory
 #include "adm.h"
                 ^
compilation terminated.
make: *** [libavfilter/vf_vmaf.o] Error 1
make: Target `all' not remade because of errors.




[...]
Ashish Singh Aug. 24, 2017, 2:05 a.m.
On Aug 24, 2017 05:13, "Michael Niedermayer" <michael@niedermayer.cc> wrote:

On Thu, Aug 24, 2017 at 12:58:53AM +0530, Ashish Pratap Singh wrote:
> From: Ashish Singh <ashk43712@gmail.com>
>
> Hi, this is vmaf filter. It fuses the scores of previous metrics adm,
motion and vif
> using svm algorithm. It's different from libvmaf filter because it has a
very little
> external dependency (only one svm model file).
> Currently it supports only one model which can be extended later for
other models.
> I have added the model file inside libavfilter/data/ so that it can run
successfully.
> There is still a bit of work left to do like changing each filter from
float
> to integer. It's in progress along with SIMD optimizations.
>
> Signed-off-by: Ashish Singh <ashk43712@gmail.com>
> ---
>  Changelog                              |   1 +
>  doc/filters.texi                       |  38 ++
>  libavfilter/Makefile                   |   1 +
>  libavfilter/allfilters.c               |   1 +
>  libavfilter/data/vmaf_v0.6.1.pkl.model | 218 ++++++++
>  libavfilter/vf_vmaf.c                  | 945
+++++++++++++++++++++++++++++++++
>  libavfilter/vmaf.h                     | 138 +++++
>  7 files changed, 1342 insertions(+)
>  create mode 100644 libavfilter/data/vmaf_v0.6.1.pkl.model
>  create mode 100644 libavfilter/vf_vmaf.c
>  create mode 100644 libavfilter/vmaf.h

fails to build

CC      libavfilter/vf_vmaf.o
libavfilter/vf_vmaf.c:36:17: fatal error: adm.h: No such file or directory
 #include "adm.h"
                 ^
compilation terminated.
make: *** [libavfilter/vf_vmaf.o] Error 1
make: Target `all' not remade because of errors.




[...]


Hi, it requires adm, vmafmotion and vif filters (earlier patches) to be
applied first.

--
Michael     GnuPG fingerprint: 9FF2128B147EF6730BADF133611EC787040B0FAB

What does censorship reveal? It reveals fear. -- Julian Assange
Michael Niedermayer Aug. 24, 2017, 6:41 a.m.
On Thu, Aug 24, 2017 at 07:35:41AM +0530, Ashish Pratap Singh wrote:
> On Aug 24, 2017 05:13, "Michael Niedermayer" <michael@niedermayer.cc> wrote:
> 
> On Thu, Aug 24, 2017 at 12:58:53AM +0530, Ashish Pratap Singh wrote:
> > From: Ashish Singh <ashk43712@gmail.com>
> >
> > Hi, this is vmaf filter. It fuses the scores of previous metrics adm,
> motion and vif
> > using svm algorithm. It's different from libvmaf filter because it has a
> very little
> > external dependency (only one svm model file).
> > Currently it supports only one model which can be extended later for
> other models.
> > I have added the model file inside libavfilter/data/ so that it can run
> successfully.
> > There is still a bit of work left to do like changing each filter from
> float
> > to integer. It's in progress along with SIMD optimizations.
> >
> > Signed-off-by: Ashish Singh <ashk43712@gmail.com>
> > ---
> >  Changelog                              |   1 +
> >  doc/filters.texi                       |  38 ++
> >  libavfilter/Makefile                   |   1 +
> >  libavfilter/allfilters.c               |   1 +
> >  libavfilter/data/vmaf_v0.6.1.pkl.model | 218 ++++++++
> >  libavfilter/vf_vmaf.c                  | 945
> +++++++++++++++++++++++++++++++++
> >  libavfilter/vmaf.h                     | 138 +++++
> >  7 files changed, 1342 insertions(+)
> >  create mode 100644 libavfilter/data/vmaf_v0.6.1.pkl.model
> >  create mode 100644 libavfilter/vf_vmaf.c
> >  create mode 100644 libavfilter/vmaf.h
> 
> fails to build
> 
> CC      libavfilter/vf_vmaf.o
> libavfilter/vf_vmaf.c:36:17: fatal error: adm.h: No such file or directory
>  #include "adm.h"
>                  ^
> compilation terminated.
> make: *** [libavfilter/vf_vmaf.o] Error 1
> make: Target `all' not remade because of errors.
> 
> 
> 
> 
> [...]
> 
> 
> Hi, it requires adm, vmafmotion and vif filters (earlier patches) to be
> applied first.

please mention dependancies in the future in patch submissions that
dont contain these dependancies

[...]

Patch hide | download patch | download mbox

diff --git a/Changelog b/Changelog
index 7a6987a..b33f0b2 100644
--- a/Changelog
+++ b/Changelog
@@ -33,6 +33,7 @@  version <next>:
 - tlut2 video filter
 - floodfill video filter
 - pseudocolor video filter
+- vmaf video filter
 
 version 3.3:
 - CrystalHD decoder moved to new decode API
diff --git a/doc/filters.texi b/doc/filters.texi
index 3b5a38f..2396d96 100644
--- a/doc/filters.texi
+++ b/doc/filters.texi
@@ -15375,6 +15375,44 @@  vignette='PI/4+random(1)*PI/50':eval=frame
 
 @end itemize
 
+@section vmaf
+
+Obtain the VMAF (Video Multi-Method Assessment Fusion)
+score between two input videos.
+
+Both video inputs must have the same resolution and pixel format.
+
+The obtained VMAF score is printed through the logging system.
+
+If no model path is specified it uses the default model: @code{vmaf_v0.6.1.pkl}.
+
+The filter has following options:
+
+@table @option
+@item model_path
+Set the model path which is to be used for SVM.
+Default value: @code{"vmaf_v0.6.1.pkl.model"}
+
+@item enable_transform
+Enables transform for computing vmaf.
+
+@item pool
+Set the pool method to be used for computing vmaf (mean, min or harmonic mean).
+@end table
+
+On the below examples the input file @file{main.mpg} being processed is
+compared with the reference file @file{ref.mpg}.
+
+For example:
+@example
+ffmpeg -i main.mpg -i ref.mpg -lavfi vmaf -f null -
+@end example
+
+Example with options:
+@example
+ffmpeg -i main.mpg -i ref.mpg -lavfi vmaf="pool=min" -f null -
+@end example
+
 @section vstack
 Stack input videos vertically.
 
diff --git a/libavfilter/Makefile b/libavfilter/Makefile
index 1d92dc1..068b29f 100644
--- a/libavfilter/Makefile
+++ b/libavfilter/Makefile
@@ -327,6 +327,7 @@  OBJS-$(CONFIG_VFLIP_FILTER)                  += vf_vflip.o
 OBJS-$(CONFIG_VIDSTABDETECT_FILTER)          += vidstabutils.o vf_vidstabdetect.o
 OBJS-$(CONFIG_VIDSTABTRANSFORM_FILTER)       += vidstabutils.o vf_vidstabtransform.o
 OBJS-$(CONFIG_VIGNETTE_FILTER)               += vf_vignette.o
+OBJS-$(CONFIG_VMAF_FILTER)                   += vf_vmaf.o dualinput.o framesync.o
 OBJS-$(CONFIG_VSTACK_FILTER)                 += vf_stack.o framesync2.o
 OBJS-$(CONFIG_W3FDIF_FILTER)                 += vf_w3fdif.o
 OBJS-$(CONFIG_WAVEFORM_FILTER)               += vf_waveform.o
diff --git a/libavfilter/allfilters.c b/libavfilter/allfilters.c
index 8b9b9a4..39c3265 100644
--- a/libavfilter/allfilters.c
+++ b/libavfilter/allfilters.c
@@ -338,6 +338,7 @@  static void register_all(void)
     REGISTER_FILTER(VIDSTABDETECT,  vidstabdetect,  vf);
     REGISTER_FILTER(VIDSTABTRANSFORM, vidstabtransform, vf);
     REGISTER_FILTER(VIGNETTE,       vignette,       vf);
+    REGISTER_FILTER(VMAF,           vmaf,           vf);
     REGISTER_FILTER(VSTACK,         vstack,         vf);
     REGISTER_FILTER(W3FDIF,         w3fdif,         vf);
     REGISTER_FILTER(WAVEFORM,       waveform,       vf);
diff --git a/libavfilter/data/vmaf_v0.6.1.pkl.model b/libavfilter/data/vmaf_v0.6.1.pkl.model
new file mode 100644
index 0000000..fe157df
--- /dev/null
+++ b/libavfilter/data/vmaf_v0.6.1.pkl.model
@@ -0,0 +1,218 @@ 
+svm_type nu_svr
+kernel_type rbf
+gamma 0.04
+nr_class 2
+total_sv 211
+rho -1.33133
+SV
+-4 1:0.65734273 2:0.34681232 3:0.093755557 4:0.60913934 5:0.69117362 6:0.73495824 
+4 1:0.8727433 2:0.49612229 3:0.59146724 4:0.78105663 5:0.84916292 6:0.8882561 
+4 1:0.89890005 2:0.49612229 3:0.66823667 4:0.86050887 5:0.90873162 6:0.93335071 
+4 1:0.20371751 2:0.49612229 3:0.10534315 4:-1.110223e-16 6:2.220446e-16 
+4 1:0.33913836 2:0.49612229 3:0.14024497 4:0.074708413 5:0.10231651 6:0.1259153 
+4 1:0.66426757 2:0.49612229 3:0.35268026 4:0.4805681 5:0.59603341 6:0.67408692 
+4 1:0.59561632 2:0.49612229 3:0.27561601 4:0.33977371 5:0.4325213 6:0.50244952 
+4 1:0.50821444 2:0.49612229 3:0.20276685 4:0.2004308 5:0.25758651 6:0.30054029 
+4 1:0.77877298 2:0.49612229 3:0.444392 4:0.61630491 5:0.71210086 6:0.77386496 
+4 1:0.71666017 2:0.49612229 3:0.35967401 4:0.47825205 5:0.57045236 6:0.63752441 
+4 1:0.64025669 2:0.49612229 3:0.27766156 4:0.33407105 5:0.40732401 6:0.46359154 
+4 1:0.88343983 2:0.23066177 3:0.65873851 4:0.86090402 5:0.90661213 6:0.93008753 
+4 1:0.90822691 2:0.23066177 3:0.71439481 4:0.90904598 5:0.94146542 6:0.95674338 
+-4 1:0.49037399 2:0.23066177 3:0.32329421 4:0.33686197 5:0.39456977 6:0.44944683 
+-4 1:0.69044383 2:0.23066177 3:0.43933868 4:0.56327049 5:0.65339511 6:0.71348696 
+-4 1:0.62390093 2:0.23066177 3:0.3800888 4:0.44927578 5:0.52327759 6:0.57907725 
+4 1:0.81887942 2:0.23066177 3:0.56208506 4:0.76164281 5:0.83176644 6:0.86914911 
+4 1:0.77189471 2:0.23066177 3:0.50145055 4:0.66525882 5:0.74327951 6:0.79017822 
+4 1:0.71405433 2:0.23066177 3:0.43952897 4:0.55736023 5:0.63319876 6:0.68402869 
+4 1:0.92114073 3:0.45198963 4:0.97703695 5:0.9907273 6:0.99510256 
+4 1:1 3:0.83319067 4:0.98956086 5:0.99577089 6:0.99784595 
+4 4:0.10344019 5:0.34323945 6:0.63855969 
+4 1:0.19531482 3:0.034330388 4:0.25480402 5:0.54197045 6:0.78020579 
+4 1:0.48394064 3:0.11866359 4:0.58816959 5:0.86435738 6:0.96191842 
+4 1:0.47628079 3:0.11185039 4:0.56180003 5:0.83415721 6:0.93617329 
+4 1:0.46278632 3:0.10308547 4:0.52247575 5:0.78583924 6:0.89392193 
+4 1:0.7038079 3:0.2174879 4:0.84423613 5:0.9662906 6:0.98430594 
+4 1:0.69596686 3:0.20657211 4:0.81196884 5:0.94140702 6:0.96680805 
+4 1:0.68404358 3:0.19261438 4:0.76066415 5:0.89973293 6:0.93660362 
+4 1:0.84073022 2:0.34681232 3:0.22411304 4:0.88845644 5:0.94169671 6:0.96221395 
+-4 1:0.33900937 2:0.34681232 3:0.027607294 4:0.40659646 5:0.45456869 6:0.48256597 
+-4 1:0.44593129 2:0.34681232 3:0.041939301 4:0.45284872 5:0.5157613 6:0.55335821 
+-4 1:0.67301747 2:0.34681232 3:0.11526222 4:0.68549511 5:0.78556255 6:0.83507583 
+-4 1:0.62833533 2:0.34681232 3:0.092281981 4:0.61278125 5:0.70626575 6:0.75613977 
+-4 1:0.57196879 2:0.34681232 3:0.067548447 4:0.53383404 5:0.61287548 6:0.65468717 
+-0.3312466607741135 1:0.75125028 2:0.34681232 3:0.1457048 4:0.75791308 5:0.84155109 6:0.88132116 
+-4 1:0.71121936 2:0.34681232 3:0.12095689 4:0.68834617 5:0.77453583 6:0.81892861 
+-4 1:0.80269544 2:0.25207203 3:0.3681723 4:0.80658472 5:0.8702283 6:0.90583519 
+-4 1:0.86095387 2:0.25207203 3:0.52475418 4:0.85053413 5:0.90454501 6:0.93093678 
+-4 1:0.5008963 2:0.25207203 3:0.2005129 4:0.41516485 5:0.45282017 6:0.47396143 
+-4 1:0.56977992 2:0.25207203 3:0.21631076 4:0.45848604 5:0.51102137 6:0.53823055 
+-4 1:0.72779828 2:0.25207203 3:0.3051639 4:0.67537297 5:0.75767261 6:0.80327187 
+-4 1:0.68848569 2:0.25207203 3:0.27393051 4:0.60399854 5:0.68000038 6:0.72275152 
+-4 1:0.64121401 2:0.25207203 3:0.23994344 4:0.52538719 5:0.5891732 6:0.62164073 
+-4 1:0.76673633 2:0.25207203 3:0.33053889 4:0.73085549 5:0.80341439 6:0.84546456 
+-4 1:0.73041172 2:0.25207203 3:0.29691153 4:0.66166141 5:0.73408074 6:0.77757209 
+-4 1:0.68529047 2:0.25207203 3:0.26283557 4:0.58611788 5:0.65192525 6:0.69015011 
+4 1:0.86902267 2:0.48885268 3:0.5143645 4:0.8587242 5:0.91841685 6:0.94498293 
+4 1:0.89266106 2:0.48885268 3:0.55208861 4:0.89938377 5:0.94642982 6:0.96615102 
+-4 1:0.42554844 2:0.48885268 3:0.2554221 4:0.36916892 5:0.43100226 6:0.50888404 
+-4 1:0.52520274 2:0.48885268 3:0.27824915 4:0.42915458 5:0.50850476 6:0.58585271 
+-4 1:0.69357445 2:0.48885268 3:0.35289928 4:0.61359907 5:0.7217863 6:0.78790011 
+-4 1:0.64679648 2:0.48885268 3:0.31268451 4:0.5167094 5:0.61224976 6:0.68477529 
+4 1:0.80595874 2:0.48885268 3:0.44075432 4:0.7803455 5:0.86328719 6:0.90222545 
+-4 1:0.7715192 2:0.48885268 3:0.4012577 4:0.70792536 5:0.80063653 6:0.85083872 
+4 1:0.82199966 2:0.20629643 3:0.30562098 4:0.80541317 5:0.89285836 6:0.92907353 
+-4 1:0.84774006 2:0.20629643 3:0.36755712 4:0.8681203 5:0.93297792 6:0.95700049 
+4 1:0.26631905 2:0.20629643 3:0.076468978 4:0.29833807 5:0.37989948 6:0.4576277 
+-4 1:0.65439648 2:0.20629643 3:0.19487894 4:0.63045155 5:0.76931142 6:0.83706632 
+4 1:0.55295603 2:0.20629643 3:0.13877412 4:0.4724047 5:0.59295828 6:0.66834832 
+4 1:0.75448924 2:0.20629643 3:0.24707248 4:0.72284103 5:0.83178838 6:0.88053503 
+4 1:0.83852041 2:0.15600331 3:0.1625414 4:0.81948421 5:0.90185357 6:0.9347395 
+4 1:0.85805266 2:0.15600331 3:0.19693206 4:0.86294641 5:0.92990351 6:0.95498998 
+-4 1:0.43384835 2:0.15600331 3:0.030541611 4:0.37279112 5:0.4588284 6:0.52004828 
+-4 1:0.72588966 2:0.48885268 3:0.35394597 4:0.61189191 5:0.70897304 6:0.77099691 
+-4 1:0.65865915 2:0.20629643 3:0.1796405 4:0.56432133 5:0.68049028 6:0.74616621 
+-4 1:0.53095193 2:0.15600331 3:0.046271684 4:0.4328793 5:0.5309142 6:0.59282089 
+-4 1:0.71891465 2:0.15600331 3:0.11085278 4:0.68794624 5:0.80350923 6:0.85660483 
+-4 1:0.68635753 2:0.15600331 3:0.091457045 4:0.60849701 5:0.72282659 6:0.78137183 
+-4 1:0.64162333 2:0.15600331 3:0.068820233 4:0.51732819 5:0.62198733 6:0.67977328 
+4 1:0.78395225 2:0.15600331 3:0.13401869 4:0.75274384 5:0.8506531 6:0.89321405 
+-4 1:0.75276337 2:0.15600331 3:0.11289462 4:0.67598462 5:0.78117168 6:0.83259364 
+-4 1:0.71345342 2:0.15600331 3:0.089218917 4:0.58797907 5:0.69284768 6:0.74971699 
+4 1:0.93500967 2:0.08765484 3:0.72226864 4:0.93291747 5:0.960644 6:0.97304054 
+4 1:0.95150668 2:0.08765484 3:0.77391346 4:0.95596295 5:0.97544784 6:0.98405871 
+-4 1:0.48148634 2:0.08765484 3:0.36628046 4:0.45852823 5:0.56005228 6:0.65708595 
+-4 1:0.59853216 2:0.08765484 3:0.42071301 4:0.56376512 5:0.66454599 6:0.741236 
+-4 1:0.79297271 2:0.08765484 3:0.5597726 4:0.80653689 5:0.88996341 6:0.92691132 
+-4 1:0.76798941 2:0.08765484 3:0.52069978 4:0.74484555 5:0.83431246 6:0.87935204 
+-4 1:0.73225133 2:0.08765484 3:0.47011786 4:0.66069877 5:0.75226598 6:0.80539407 
+-4 1:0.87240592 2:0.08765484 3:0.62680052 4:0.88208508 5:0.93041565 6:0.9505376 
+-4 1:0.84834872 2:0.08765484 3:0.58154998 4:0.82429855 5:0.8858516 6:0.91563291 
+-4 1:0.84365382 2:0.93973481 3:0.36718425 4:0.81512123 5:0.88887359 6:0.92320992 
+-4 1:0.89242364 2:0.93973481 3:0.41336953 4:0.88038833 5:0.93688884 6:0.95992879 
+-4 1:0.31373571 2:0.93973481 3:0.18757116 4:0.34864297 5:0.3777168 6:0.38922611 
+-4 1:0.42490775 2:0.93973481 3:0.20295859 4:0.39290035 5:0.43632323 6:0.45871216 
+-4 1:0.66865444 2:0.93973481 3:0.28594627 4:0.63969879 5:0.73360583 6:0.78380069 
+-4 1:0.62642524 2:0.93973481 3:0.26141889 4:0.56602175 5:0.64775366 6:0.69263211 
+-4 1:0.57430455 2:0.93973481 3:0.23537634 4:0.48984694 5:0.55363885 6:0.5853905 
+-4 1:0.76178555 2:0.93973481 3:0.32205372 4:0.7176044 5:0.80237787 6:0.84588741 
+-4 1:0.72282163 2:0.93973481 3:0.29554025 4:0.64471949 5:0.72634443 6:0.77062686 
+-4 1:0.67693861 2:0.93973481 3:0.2669659 4:0.56720118 5:0.63868728 6:0.67673331 
+4 1:0.86023804 2:0.49739676 3:0.53966638 4:0.77392585 5:0.84784447 6:0.89031641 
+1.296591709971377 1:0.31779385 2:0.49739676 3:0.17094319 4:0.12195679 5:0.13277563 6:0.14165413 
+4 1:0.68317784 2:0.49739676 3:0.37192301 4:0.52750491 5:0.62426522 6:0.6929947 
+4 1:0.55611181 2:0.49739676 3:0.24752355 4:0.28326524 5:0.33261781 6:0.37104424 
+4 1:0.7772257 2:0.49739676 3:0.43832146 4:0.63397606 5:0.7240692 6:0.78367237 
+4 1:0.66186286 2:0.49739676 3:0.30599867 4:0.39201262 5:0.45927759 6:0.51239284 
+4 1:0.94601776 2:0.04579546 3:0.69472114 4:0.97790884 5:0.9891237 6:0.993277 
+4 1:0.98838404 2:0.04579546 3:0.90293444 4:0.99181622 5:0.99642641 6:0.9978864 
+4 1:0.30006056 2:0.04579546 3:0.31879 4:0.45852885 5:0.59717781 6:0.71487885 
+-4 1:0.44902891 2:0.04579546 3:0.35412414 4:0.55926446 5:0.70175505 6:0.79649177 
+-4 1:0.69856222 2:0.04579546 3:0.45989947 4:0.82115248 5:0.92520734 6:0.9594384 
+-4 1:0.67730161 2:0.04579546 3:0.44400319 4:0.77920819 5:0.88713866 6:0.92903178 
+-4 1:0.64419192 2:0.04579546 3:0.42297435 4:0.72390263 5:0.83364665 6:0.88344569 
+-4 1:0.80781899 2:0.04579546 3:0.52334234 4:0.88859427 5:0.94013924 6:0.95946903 
+-4 1:0.78080761 2:0.04579546 3:0.499439 4:0.84012074 5:0.90229375 6:0.92936693 
+4 1:0.97128596 2:0.014623935 3:0.90135809 4:0.99584619 5:0.9970631 6:0.99757649 
+4 1:0.99645027 2:0.014623935 3:1 4:1 5:1 6:1 
+-4 1:0.5326065 2:0.014623935 3:0.75468972 4:0.76017077 5:0.83753774 6:0.92265059 
+-4 1:0.62757004 2:0.014623935 3:0.77708563 4:0.84258654 5:0.91016348 6:0.95440359 
+-4 1:0.79306842 2:0.014623935 3:0.78900741 4:0.90386551 5:0.96905764 6:0.98466408 
+-4 1:0.77722867 2:0.014623935 3:0.78701408 4:0.89679281 5:0.96056131 6:0.977629 
+-4 1:0.75934622 2:0.014623935 3:0.78422805 4:0.88268036 5:0.94383829 6:0.96596858 
+-4 1:0.8878718 2:0.014623935 3:0.81445984 4:0.96615706 5:0.98858241 6:0.99176534 
+-4 1:0.88211614 2:0.014623935 3:0.81253935 4:0.95982371 5:0.98309178 6:0.9870796 
+4 1:0.83805466 2:0.22767235 3:0.31750162 4:0.85145925 5:0.9121085 6:0.93772147 
+4 1:0.86620985 2:0.22767235 3:0.35742938 4:0.89821492 5:0.94339974 6:0.96076173 
+4 1:0.39289606 2:0.22767235 3:0.12019254 4:0.3951559 5:0.44657802 6:0.46771549 
+4 1:0.48692411 2:0.22767235 3:0.13362033 4:0.43434224 5:0.49900609 6:0.53177669 
+4 1:0.69743918 2:0.22767235 3:0.2263303 4:0.68859985 5:0.78706365 6:0.83662428 
+4 1:0.65237548 2:0.22767235 3:0.19328493 4:0.60107975 5:0.69684945 6:0.74949279 
+4 1:0.59461718 2:0.22767235 3:0.15963705 4:0.51010642 5:0.59283393 6:0.63883591 
+4 1:0.77302727 2:0.22767235 3:0.26078021 4:0.76359704 5:0.8470807 6:0.8858359 
+4 1:0.72953038 2:0.22767235 3:0.22331233 4:0.67735915 5:0.77029889 6:0.81802539 
+4 1:0.87210923 2:0.16787772 3:0.69408521 4:0.91495146 5:0.94890261 6:0.96269344 
+-4 1:0.81595959 2:0.08765484 3:0.52947327 4:0.7501341 5:0.82294191 6:0.86264385 
+4 1:0.72562415 2:0.49739676 3:0.37130724 4:0.51472366 5:0.59961357 6:0.66258291 
+-4 1:0.87135693 2:0.014623935 3:0.80905852 4:0.94637428 5:0.97242826 6:0.97946694 
+-4 1:0.48910215 2:0.16787772 3:0.49792761 4:0.59161372 5:0.62979552 6:0.64254584 
+-4 1:0.5685964 2:0.16787772 3:0.5149767 4:0.63026581 5:0.67890679 6:0.69964851 
+-4 1:0.75935478 2:0.16787772 3:0.60695536 4:0.80906778 5:0.87125816 6:0.89810007 
+-4 1:0.71788601 2:0.16787772 3:0.57600091 4:0.75310216 5:0.81471966 6:0.84249923 
+-4 1:0.66516668 2:0.16787772 3:0.54473368 4:0.69254626 5:0.74796983 6:0.77177867 
+4 1:0.81880869 2:0.16787772 3:0.64309172 4:0.86078024 5:0.90892223 6:0.92908907 
+-4 1:0.78054558 2:0.16787772 3:0.60849279 4:0.80724494 5:0.86183239 6:0.88618408 
+4 1:0.95353512 2:0.055921852 3:0.61526026 4:0.94655706 5:0.97211195 6:0.98210701 
+4 1:0.98368527 2:0.055921852 3:0.7405327 4:0.96928567 5:0.9853799 6:0.99080378 
+4 1:0.11318821 2:0.055921852 3:0.1590151 4:0.30536689 5:0.48614515 6:0.64344462 
+4 1:0.30298819 2:0.055921852 3:0.19401703 4:0.41679982 5:0.61495039 6:0.74140301 
+4 1:0.60614412 2:0.055921852 3:0.31791569 4:0.72365433 5:0.88324129 6:0.93484545 
+4 1:0.58738733 2:0.055921852 3:0.29301498 4:0.67070014 5:0.83429953 6:0.89348041 
+4 1:0.79496816 2:0.055921852 3:0.42192974 4:0.86711004 5:0.94030868 6:0.96084539 
+4 1:0.77749763 2:0.055921852 3:0.38714172 4:0.81340799 5:0.90059649 6:0.93006702 
+4 1:0.75215882 2:0.055921852 3:0.34721658 4:0.73960747 5:0.84370247 6:0.88485372 
+4 1:0.89732805 2:0.58937038 3:0.58823535 4:0.80035053 5:0.86988422 6:0.90533033 
+-4 1:0.9228759 2:0.58937038 3:0.65797705 4:0.87169952 5:0.92200942 6:0.94454256 
+4 1:0.19504362 2:0.58937038 3:0.21585801 4:0.1754362 5:0.20844015 6:0.23846443 
+4 1:0.34425894 2:0.58937038 3:0.24672569 4:0.24188506 5:0.29544562 6:0.33843061 
+4 1:0.66407117 2:0.58937038 3:0.40045124 4:0.55415203 5:0.66628031 6:0.73418465 
+4 1:0.60780044 2:0.58937038 3:0.34931828 4:0.4519606 5:0.54893247 6:0.61355219 
+4 1:0.53476258 2:0.58937038 3:0.29851601 4:0.34826788 5:0.42168642 6:0.47203603 
+4 1:0.79195776 2:0.58937038 3:0.47493233 4:0.66775916 5:0.76196439 6:0.81489875 
+4 1:0.7415564 2:0.58937038 3:0.41507439 4:0.56413083 5:0.65815516 6:0.7166999 
+4 1:0.82021207 2:1 3:0.37381485 4:0.7891612 5:0.87031145 6:0.90944281 
+-3.795805084530972 1:0.85903236 2:1 3:0.43235998 4:0.86707094 5:0.92632217 6:0.95151451 
+-4 1:0.25243046 2:1 3:0.084027451 4:0.15537936 5:0.17410072 6:0.17212333 
+-4 1:0.35643487 2:1 3:0.10644455 4:0.21484368 5:0.25587544 6:0.27527817 
+-4 1:0.57605414 2:1 3:0.19031962 4:0.43030863 5:0.5277316 6:0.59069772 
+-4 1:0.49071444 2:1 3:0.14452095 4:0.31406915 5:0.38353445 6:0.42653517 
+4 1:0.73255545 2:1 3:0.28883701 4:0.65284485 5:0.75623242 6:0.81297442 
+0.4082706381617505 1:0.67015395 2:1 3:0.2367756 4:0.5367057 5:0.64063877 6:0.70451767 
+-4 1:0.84450653 2:0.083369236 3:0.57279245 4:0.85249389 5:0.91751611 6:0.94621989 
+-4 1:0.39559773 2:0.083369236 3:0.28184137 4:0.37025203 5:0.46733936 6:0.53517338 
+-4 1:0.70621493 2:0.083369236 3:0.42718441 4:0.69347659 5:0.81124449 6:0.87136343 
+-4 1:0.65615861 2:0.083369236 3:0.37833052 4:0.59301482 5:0.71772587 6:0.7905538 
+-4 1:0.58837863 2:0.083369236 3:0.33229353 4:0.48675881 5:0.60141743 6:0.67458413 
+-4 1:0.77687144 2:0.083369236 3:0.48094343 4:0.76665994 5:0.86191893 6:0.90760934 
+-1.966116876631112 1:0.72849768 2:0.083369236 3:0.42082971 4:0.66591147 5:0.77995959 6:0.84260661 
+-3.906831378063804 1:0.66320082 2:0.083369236 3:0.36350305 4:0.54888271 5:0.66506794 6:0.73685112 
+4 1:0.84500499 2:0.42532178 3:0.43562507 4:0.80721931 5:0.87934044 6:0.91434143 
+4 1:0.8874543 2:0.42532178 3:0.50912639 4:0.87959883 5:0.93223488 6:0.95450335 
+4 1:0.31032192 2:0.42532178 3:0.18976794 4:0.30662908 5:0.34637104 6:0.3661022 
+4 1:0.41026349 2:0.42532178 3:0.20589097 4:0.35241209 5:0.40358156 6:0.42577381 
+4 1:0.67552108 2:0.42532178 3:0.30879992 4:0.60375124 5:0.70097073 6:0.75507206 
+4 1:0.62772585 2:0.42532178 3:0.27349745 4:0.5196735 5:0.60339149 6:0.65103342 
+4 1:0.5741386 2:0.42532178 3:0.24033766 4:0.43855753 5:0.50243186 6:0.53322825 
+4 1:0.7629976 2:0.42532178 3:0.35347476 4:0.69239941 5:0.78245146 6:0.83117443 
+4 1:0.71746409 2:0.42532178 3:0.31296983 4:0.60525302 5:0.69243388 6:0.7432587 
+-4 1:0.73137955 2:0.16787772 3:0.57222383 4:0.74405775 5:0.79993424 6:0.82484891 
+4 1:0.67383121 2:0.58937038 3:0.35481019 4:0.45269287 5:0.53578336 6:0.59116487 
+4 1:0.5905971 2:1 3:0.18559792 4:0.41535212 5:0.50422336 6:0.56173557 
+4 1:0.66157018 2:0.42532178 3:0.27479904 4:0.51802649 5:0.59270541 6:0.63560969 
+-4 1:0.66827754 2:0.54342577 3:0.18169339 4:0.50290989 5:0.59875259 6:0.65332628 
+4 1:0.85027066 2:0.20820673 3:0.40997978 4:0.82462749 5:0.89794736 6:0.93142825 
+4 1:0.87892054 2:0.20820673 3:0.45891267 4:0.87823329 5:0.93535353 6:0.95883927 
+4 1:0.3986268 2:0.20820673 3:0.17753958 4:0.33495583 5:0.39777832 6:0.44399359 
+-4 1:0.48997993 2:0.20820673 3:0.20172681 4:0.39715881 5:0.47368229 6:0.52781628 
+4 1:0.7022939 2:0.20820673 3:0.31094767 4:0.6676259 5:0.77726116 6:0.83518027 
+-4 1:0.65773092 2:0.20820673 3:0.27420721 4:0.57889989 5:0.68485118 6:0.74837036 
+0.2951376518668717 1:0.60031736 2:0.20820673 3:0.23419121 4:0.48018865 5:0.57200972 6:0.63197473 
+4 1:0.77623676 2:0.20820673 3:0.3510016 4:0.74206651 5:0.83508543 6:0.88101902 
+4 1:0.73562396 2:0.20820673 3:0.31004997 4:0.6557112 5:0.75585014 6:0.81164989 
+-4 1:0.67923081 2:0.20820673 3:0.26679137 4:0.55816547 5:0.65579282 6:0.71593631 
+4 1:0.83968539 2:0.54342577 3:0.32439292 4:0.78747769 5:0.87303614 6:0.91271252 
+4 1:0.86656342 2:0.54342577 3:0.37898741 4:0.85252726 5:0.92049615 6:0.94848246 
+-4 1:0.42728303 2:0.54342577 3:0.10123262 4:0.31581962 5:0.38571265 6:0.42827036 
+-4 1:0.63194526 2:0.54342577 3:0.18169045 4:0.51611903 5:0.62179755 6:0.68216176 
+4 1:0.56954706 2:0.54342577 3:0.14271477 4:0.41491191 5:0.50173488 6:0.55220392 
+4 1:0.76753176 2:0.54342577 3:0.26295318 4:0.6905031 5:0.79291823 6:0.84469464 
+-4 1:0.72348649 2:0.54342577 3:0.22334634 4:0.60145902 5:0.70573225 6:0.76318544 
+4 1:0.83584492 2:0.047285912 3:0.53826775 4:0.933335 5:0.95948954 6:0.96870909 
+4 1:0.85530855 2:0.047285912 3:0.55323777 4:0.95113339 5:0.97249918 6:0.9795177 
+-4 1:0.53835734 2:0.047285912 3:0.41965074 4:0.71632669 5:0.73953043 6:0.73487553 
+-4 1:0.59175144 2:0.047285912 3:0.43113594 4:0.74141738 5:0.76929188 6:0.77018949 
+-4 1:0.75962366 2:0.047285912 3:0.49613729 4:0.87838146 5:0.91688438 6:0.93150362 
+-4 1:0.72043129 2:0.047285912 3:0.47217411 4:0.83138845 5:0.8704229 6:0.88419439 
+-4 1:0.67287449 2:0.047285912 3:0.44652268 4:0.77691812 5:0.81043483 6:0.8177009 
+-4 1:0.8023177 2:0.047285912 3:0.51559706 4:0.90512389 5:0.93743101 6:0.9492968 
+-4 1:0.76751376 2:0.047285912 3:0.49225957 4:0.86357299 5:0.89948127 6:0.91221155 
+-4 1:0.72124785 2:0.047285912 3:0.46606653 4:0.81323145 5:0.84847474 6:0.85892657 
diff --git a/libavfilter/vf_vmaf.c b/libavfilter/vf_vmaf.c
new file mode 100644
index 0000000..4cb93eb
--- /dev/null
+++ b/libavfilter/vf_vmaf.c
@@ -0,0 +1,945 @@ 
+/*
+ * Copyright (c) 2017 Ronald S. Bultje <rsbultje@gmail.com>
+ * Copyright (c) 2017 Ashish Pratap Singh <ashk43712@gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Calculate the VMAF between two input videos.
+ */
+
+#include "libavutil/avstring.h"
+#include "libavutil/opt.h"
+#include "libavutil/pixdesc.h"
+#include "avfilter.h"
+#include "dualinput.h"
+#include "drawutils.h"
+#include "formats.h"
+#include "internal.h"
+#include "video.h"
+#include "adm.h"
+#include "vmaf_motion.h"
+#include "vif.h"
+#include "vmaf.h"
+
+typedef struct VMAFContext {
+    const AVClass *class;
+    FFDualInputContext dinput;
+    const AVPixFmtDescriptor *desc;
+    int width;
+    int height;
+    uint8_t called;
+    double score;
+    double scores[8];
+    double score_num;
+    double score_den;
+    int conv_filter[5];
+    float *ref_data;
+    float *main_data;
+    float *adm_data_buf;
+    float *adm_temp_lo;
+    float *adm_temp_hi;
+    uint16_t *prev_blur_data;
+    uint16_t *blur_data;
+    uint16_t *temp_data;
+    float *vif_data_buf;
+    float *vif_temp;
+    double prev_motion_score;
+    double vmaf_score;
+    uint64_t nb_frames;
+    char *model_path;
+    int enable_transform;
+    char *pool;
+    svm_model *svm_model_ptr;
+    svm_node* nodes;
+    void (*pool_method)(double *score, double curr);
+    double prediction;
+} VMAFContext;
+
+#define OFFSET(x) offsetof(VMAFContext, x)
+#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
+
+static const AVOption vmaf_options[] = {
+    {"model_path",  "Set the model to be used for computing vmaf.",                     OFFSET(model_path), AV_OPT_TYPE_STRING, {.str="libavfilter/data/vmaf_v0.6.1.pkl.model"}, 0, 1, FLAGS},
+    {"enable_transform",  "Enables transform for computing vmaf.",                      OFFSET(enable_transform), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS},
+    {"pool",  "Set the pool method to be used for computing vmaf.",                     OFFSET(pool), AV_OPT_TYPE_STRING, {.str="mean"}, 0, 1, FLAGS},
+    { NULL }
+};
+
+AVFILTER_DEFINE_CLASS(vmaf);
+
+#define MAX_ALIGN 32
+#define ALIGN_CEIL(x) ((x) + ((x) % MAX_ALIGN ? MAX_ALIGN - (x) % MAX_ALIGN : 0))
+
+enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };    /** svm_type */
+enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /** kernel_type */
+
+#define swap(type, x, y) { type t=x; x=y; y=t; }
+
+static inline double power(double base, int times)
+{
+    double tmp = base, ret = 1.0;
+
+    for(int t = times; t > 0; t /= 2) {
+        if(t % 2 == 1) {
+            ret *= tmp;
+        }
+        tmp = tmp * tmp;
+    }
+    return ret;
+}
+
+static double dot(const svm_node *px, const svm_node *py)
+{
+    double sum = 0;
+    while(px->index != -1 && py->index != -1) {
+        if(px->index == py->index) {
+            sum += px->value * py->value;
+            px++;
+            py++;
+        } else {
+            if(px->index > py->index) {
+                py++;
+            } else {
+                px++;
+            }
+        }
+    }
+    return sum;
+}
+
+static double k_function(const svm_node *x, const svm_node *y,
+                         const svm_parameter *param)
+{
+    switch(param->kernel_type) {
+        case LINEAR:
+            return dot(x, y);
+        case POLY:
+            return power(param->gamma * dot(x, y) + param->coef0, param->degree);
+        case RBF: {
+                      double sum = 0;
+                      while(x->index != -1 && y->index !=-1) {
+                          if(x->index == y->index) {
+                              double d = x->value - y->value;
+                              sum += d * d;
+                              x++;
+                              y++;
+                          } else {
+                              if(x->index > y->index) {
+                                  sum += y->value * y->value;
+                                  y++;
+                              } else {
+                                  sum += x->value * x->value;
+                                  x++;
+                              }
+                          }
+                      }
+
+                      while(x->index != -1) {
+                          sum += x->value * x->value;
+                          x++;
+                      }
+
+                      while(y->index != -1) {
+                          sum += y->value * y->value;
+                          y++;
+                      }
+
+                      return exp(-param->gamma * sum);
+                  }
+        case SIGMOID:
+                  return tanh(param->gamma * dot(x, y) + param->coef0);
+        case PRECOMPUTED:
+                  return x[(int)(y->value)].value;
+        default:
+                  return 0;
+    }
+}
+
+#define INF HUGE_VAL
+#define TAU 1e-12
+#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
+
+static double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
+{
+    int i, j;
+    if(model->param.svm_type == ONE_CLASS ||
+       model->param.svm_type == EPSILON_SVR ||
+       model->param.svm_type == NU_SVR) {
+        double *sv_coef = model->sv_coef[0];
+        double sum = 0;
+        for(i = 0; i < model->l; i++) {
+            sum += sv_coef[i] * k_function(x, model->SV[i], &model->param);
+        }
+        sum -= model->rho[0];
+        *dec_values = sum;
+
+        if(model->param.svm_type == ONE_CLASS) {
+            return (sum > 0) ? 1 : -1;
+        } else {
+            return sum;
+        }
+    } else {
+        int nr_class = model->nr_class;
+        int l = model->l;
+        int *start;
+        int *vote;
+        int p;
+        int vote_max_idx;
+        double *kvalue = Malloc(double,l);
+        for(i = 0; i < l; i++) {
+            kvalue[i] = k_function(x, model->SV[i], &model->param);
+        }
+
+        start = Malloc(int,nr_class);
+        start[0] = 0;
+        for(i = 1; i < nr_class; i++) {
+            start[i] = start[i - 1] + model->nSV[i - 1];
+        }
+
+        vote = Malloc(int,nr_class);
+        for(i = 0; i < nr_class; i++) {
+            vote[i] = 0;
+        }
+
+        p=0;
+        for(i = 0; i < nr_class; i++) {
+            for(j = i + 1; j < nr_class; j++) {
+                double sum = 0;
+                int si = start[i];
+                int sj = start[j];
+                int ci = model->nSV[i];
+                int cj = model->nSV[j];
+
+                int k;
+                double *coef1 = model->sv_coef[j - 1];
+                double *coef2 = model->sv_coef[i];
+                for(k = 0; k < ci; k++) {
+                    sum += coef1[si + k] * kvalue[si + k];
+                }
+                for(k = 0; k < cj; k++) {
+                    sum += coef2[sj + k] * kvalue[sj + k];
+                }
+                sum -= model->rho[p];
+                dec_values[p] = sum;
+
+                if(dec_values[p] > 0) {
+                    vote[i]++;
+                } else {
+                    vote[j]++;
+                }
+                p++;
+            }
+        }
+
+        vote_max_idx = 0;
+        for(i = 1; i < nr_class; i++) {
+            if(vote[i] > vote[vote_max_idx]) {
+                vote_max_idx = i;
+            }
+        }
+
+        av_free(kvalue);
+        av_free(start);
+        av_free(vote);
+        return model->label[vote_max_idx];
+    }
+}
+
+static double svm_predict(const svm_model *model, const svm_node *x)
+{
+    int nr_class = model->nr_class;
+    double *dec_values;
+    double pred_result;
+    if(model->param.svm_type == ONE_CLASS ||
+       model->param.svm_type == EPSILON_SVR ||
+       model->param.svm_type == NU_SVR) {
+        dec_values = Malloc(double, 1);
+    } else {
+        dec_values = Malloc(double, nr_class * (nr_class - 1) / 2);
+    }
+    pred_result = svm_predict_values(model, x, dec_values);
+    av_free(dec_values);
+    return pred_result;
+}
+
+static const char *svm_type_table[] =
+{
+    "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
+};
+
+static const char *kernel_type_table[]=
+{
+    "linear","polynomial","rbf","sigmoid","precomputed",NULL
+};
+
+static char *line = NULL;
+static int max_line_len;
+
+static char* readline(FILE *input)
+{
+    int len;
+
+    if(fgets(line,max_line_len,input) == NULL) {
+        return NULL;
+    }
+
+    while(strrchr(line, '\n') == NULL) {
+        max_line_len *= 2;
+        line = (char *) realloc(line, max_line_len);
+        len = (int) strlen(line);
+        if(fgets(line+len, max_line_len-len, input) == NULL) {
+            break;
+        }
+    }
+    return line;
+}
+
+/** FSCANF helps to handle fscanf failures.
+ * Its do-while block avoids the ambiguity when
+ * if (...)
+ *    FSCANF();
+ * is used
+ */
+#define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, _format, _var) != 1) return 0; }while(0)
+static int read_model_header(FILE *fp, svm_model* model, AVFilterContext *ctx)
+{
+    svm_parameter* param = &model->param;
+    char cmd[81];
+    int i;
+    while(1) {
+        FSCANF(fp, "%80s", cmd);
+
+        if(av_strcasecmp(cmd, "svm_type") == 0) {
+            FSCANF(fp, "%80s", cmd);
+            for(i = 0; svm_type_table[i]; i++) {
+                if(av_strcasecmp(svm_type_table[i], cmd) == 0) {
+                    param->svm_type = i;
+                    break;
+                }
+            }
+            if(svm_type_table[i] == NULL) {
+                av_log(ctx, AV_LOG_ERROR, "unknown svm type.\n");
+                return 0;
+            }
+        } else if(av_strcasecmp(cmd, "kernel_type") == 0) {
+            FSCANF(fp, "%80s", cmd);
+            for(i = 0; kernel_type_table[i]; i++) {
+                if(av_strcasecmp(kernel_type_table[i], cmd) == 0) {
+                    param->kernel_type = i;
+                    break;
+                }
+            }
+            if(kernel_type_table[i] == NULL) {
+                av_log(ctx, AV_LOG_ERROR, "unknown kernel function.\n");
+                return 0;
+            }
+        } else if(av_strcasecmp(cmd, "degree") == 0) {
+            FSCANF(fp, "%d", &param->degree);
+        } else if(av_strcasecmp(cmd, "gamma") == 0) {
+            FSCANF(fp, "%lf", &param->gamma);
+        } else if(av_strcasecmp(cmd, "coef0") == 0) {
+            FSCANF(fp, "%lf", &param->coef0);
+        } else if(av_strcasecmp(cmd, "nr_class") == 0) {
+            FSCANF(fp,"%d",&model->nr_class);
+        } else if(av_strcasecmp(cmd, "total_sv") == 0) {
+            FSCANF(fp, "%d", &model->l);
+        } else if(av_strcasecmp(cmd, "rho")==0) {
+            int n = model->nr_class * (model->nr_class-1) / 2;
+            model->rho = Malloc(double, n);
+            for(i = 0; i < n; i++) {
+                FSCANF(fp, "%lf", &model->rho[i]);
+            }
+        } else if(av_strcasecmp(cmd, "label") == 0) {
+            int n = model->nr_class;
+            model->label = Malloc(int, n);
+            for(i = 0; i < n; i++) {
+                FSCANF(fp, "%d", &model->label[i]);
+            }
+        } else if(av_strcasecmp(cmd, "probA") == 0) {
+            int n = model->nr_class * (model->nr_class - 1) / 2;
+            model->probA = Malloc(double, n);
+            for(i = 0;i < n; i++) {
+                FSCANF(fp, "%lf", &model->probA[i]);
+            }
+        } else if(av_strcasecmp(cmd, "probB") == 0) {
+            int n = model->nr_class * (model->nr_class - 1) / 2;
+            model->probB = Malloc(double,n);
+            for(i = 0; i < n; i++) {
+                FSCANF(fp, "%lf", &model->probB[i]);
+            }
+        } else if(av_strcasecmp(cmd, "nr_sv") == 0) {
+            int n = model->nr_class;
+            model->nSV = Malloc(int, n);
+            for(i = 0; i < n; i++) {
+                FSCANF(fp, "%d", &model->nSV[i]);
+            }
+        } else if(av_strcasecmp(cmd, "SV") == 0) {
+            while(1) {
+                int c = getc(fp);
+                if(c == EOF || c == '\n') {
+                    break;
+                }
+            }
+            break;
+        } else {
+            av_log(ctx, AV_LOG_ERROR, "unknown text in model file: [%s]\n", cmd);
+            return 0;
+        }
+    }
+
+    return 1;
+
+}
+
+static svm_model *svm_load_model(const char *model_file_name, AVFilterContext *ctx)
+{
+    FILE *fp = fopen(model_file_name, "rb");
+    int i, j, k, l, m;
+    char *p, *endptr, *idx, *val;
+    svm_model *model;
+
+    int elements;
+    long pos;
+    svm_node *x_space;
+
+    if(fp == NULL) {
+        return NULL;
+    }
+
+    /** read parameters */
+    model = Malloc(svm_model,1);
+    model->rho = NULL;
+    model->probA = NULL;
+    model->probB = NULL;
+    model->sv_indices = NULL;
+    model->label = NULL;
+    model->nSV = NULL;
+
+    /** read header */
+    if (!read_model_header(fp, model, ctx)) {
+        av_log(ctx, AV_LOG_ERROR, "ERROR: fscanf failed to read model\n");
+        av_free(model->rho);
+        av_free(model->label);
+        av_free(model->nSV);
+        av_free(model);
+        return NULL;
+    }
+
+    /** read sv_coef and SV */
+    elements = 0;
+    pos = ftell(fp);
+
+    max_line_len = 1024;
+    line = Malloc(char, max_line_len);
+
+    while(readline(fp) != NULL) {
+        p = strtok(line, ":");
+        while(1) {
+            p = strtok(NULL, ":");
+            if(p == NULL) {
+                break;
+            }
+            elements++;
+        }
+    }
+    elements += model->l;
+
+    fseek(fp, pos, SEEK_SET);
+
+    m = model->nr_class - 1;
+    l = model->l;
+    model->sv_coef = Malloc(double *,m);
+    for(i = 0; i < m; i++) {
+        model->sv_coef[i] = Malloc(double,l);
+    }
+    model->SV = Malloc(svm_node*, l);
+    x_space = NULL;
+    if(l > 0) {
+        x_space = Malloc(svm_node, elements);
+    }
+
+    j=0;
+    for(i = 0; i < l; i++) {
+        readline(fp);
+        model->SV[i] = &x_space[j];
+
+        p = strtok(line, " \t");
+        model->sv_coef[0][i] = strtod(p, &endptr);
+        for(k = 1; k < m; k++) {
+            p = strtok(NULL, " \t");
+            model->sv_coef[k][i] = strtod(p, &endptr);
+        }
+
+        while(1) {
+            idx = strtok(NULL, ":");
+            val = strtok(NULL, " \t");
+
+            if(val == NULL) {
+                break;
+            }
+            x_space[j].index = (int) strtol(idx, &endptr, 10);
+            x_space[j].value = strtod(val, &endptr);
+
+            j++;
+        }
+        x_space[j++].index = -1;
+    }
+    av_free(line);
+
+    if (ferror(fp) != 0 || fclose(fp) != 0) {
+        return NULL;
+    }
+
+    model->free_sv = 1;
+    return model;
+}
+
+static void svm_free_model_content(svm_model* model_ptr)
+{
+    int i;
+    if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL) {
+        av_free((void *) (model_ptr->SV[0]));
+    }
+    if(model_ptr->sv_coef) {
+        for(i = 0; i < model_ptr->nr_class - 1; i++) {
+            av_free(model_ptr->sv_coef[i]);
+        }
+    }
+
+    av_free(model_ptr->SV);
+    model_ptr->SV = NULL;
+
+    av_free(model_ptr->sv_coef);
+    model_ptr->sv_coef = NULL;
+
+    av_free(model_ptr->rho);
+    model_ptr->rho = NULL;
+
+    av_free(model_ptr->label);
+    model_ptr->label= NULL;
+
+    av_free(model_ptr->probA);
+    model_ptr->probA = NULL;
+
+    av_free(model_ptr->probB);
+    model_ptr->probB= NULL;
+
+    av_free(model_ptr->sv_indices);
+    model_ptr->sv_indices = NULL;
+
+    av_free(model_ptr->nSV);
+    model_ptr->nSV = NULL;
+}
+
+static void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
+{
+    if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL) {
+        svm_free_model_content(*model_ptr_ptr);
+        av_free(*model_ptr_ptr);
+        *model_ptr_ptr = NULL;
+    }
+}
+
+static void mean(double *score, double curr)
+{
+    *score += curr;
+}
+
+static void min(double *score, double curr)
+{
+    *score = FFMIN(*score, curr);
+}
+
+static void harmonic_mean(double *score, double curr)
+{
+    *score += 1.0 / (curr + 1.0);
+}
+
+#define offset_fn(type, bits) \
+    static void offset_##bits##bit(VMAFContext *s, const AVFrame *ref, AVFrame *main, int stride) \
+{ \
+    int w = s->width; \
+    int h = s->height; \
+    int i,j; \
+    \
+    ptrdiff_t ref_stride = ref->linesize[0]; \
+    ptrdiff_t main_stride = main->linesize[0]; \
+    \
+    const type *ref_ptr = (const type *) ref->data[0]; \
+    const type *main_ptr = (const type *) main->data[0]; \
+    \
+    float *ref_ptr_data = s->ref_data; \
+    float *main_ptr_data = s->main_data; \
+    \
+    for(i = 0; i < h; i++) { \
+        for(j = 0; j < w; j++) { \
+            ref_ptr_data[j] = (float) ref_ptr[j]; \
+            main_ptr_data[j] = (float) main_ptr[j]; \
+        } \
+        ref_ptr += ref_stride / sizeof(type); \
+        ref_ptr_data += stride / sizeof(float); \
+        main_ptr += main_stride / sizeof(type); \
+        main_ptr_data += stride / sizeof(float); \
+    } \
+}
+
+offset_fn(uint8_t, 8);
+offset_fn(uint16_t, 10);
+
+static int compute_vmaf(const AVFrame *ref, AVFrame *main, void *ctx)
+{
+    VMAFContext *s = (VMAFContext *) ctx;
+
+    size_t motion_data_sz;
+    int i,j;
+    ptrdiff_t ref_stride;
+    ptrdiff_t ref_px_stride;
+    ptrdiff_t stride;
+    ptrdiff_t motion_stride;
+    ptrdiff_t motion_px_stride;
+    int w = s->width;
+    int h = s->height;
+
+    ref_stride = ref->linesize[0];
+
+    stride = ALIGN_CEIL(w * sizeof(float));
+    motion_stride = ALIGN_CEIL(w * sizeof(uint16_t));
+    motion_px_stride = motion_stride / sizeof(uint16_t);
+
+    /** Offset ref and main pixel by OPT_RANGE_PIXEL_OFFSET */
+    if (s->desc->comp[0].depth <= 8) {
+        offset_8bit(s, ref, main, stride);
+    } else {
+        offset_10bit(s, ref, main, stride);
+    }
+
+    motion_data_sz = (size_t)motion_stride * s->height;
+
+    compute_adm2(s->ref_data, s->main_data, w, h, stride, stride, &s->score,
+                 &s->score_num, &s->score_den, s->scores, s->adm_data_buf,
+                 s->adm_temp_lo, s->adm_temp_hi);
+    s->nodes[0].index = 1;
+    s->nodes[0].value = (double)(slopes[1]) * (double)(s->score_num / s->score_den) + (double)(intercepts[1]);
+
+    if (s->desc->comp[0].depth <= 8) {
+        ref_px_stride = ref_stride / sizeof(uint8_t);
+        convolution_f32(s->conv_filter, 5, (const uint8_t *) ref->data[0],
+                        s->blur_data, s->temp_data, s->width, s->height,
+                        ref_px_stride, motion_px_stride, 8);
+    } else {
+        ref_px_stride = ref_stride / sizeof(uint16_t);
+        convolution_f32(s->conv_filter, 5, (const uint16_t *) ref->data[0],
+                        s->blur_data, s->temp_data, s->width, s->height,
+                        ref_px_stride, motion_px_stride, 10);
+    }
+
+    if(!s->nb_frames) {
+        s->score = 0.0;
+    } else {
+        compute_vmafmotion(s->prev_blur_data, s->blur_data, s->width, s->height,
+                           motion_stride, motion_stride, &s->score);
+    }
+
+    memcpy(s->prev_blur_data, s->blur_data, motion_data_sz);
+
+    s->nodes[1].index = 2;
+    s->nodes[1].value = (double)(slopes[2]) * (double)FFMIN(s->prev_motion_score, s->score) + (double)(intercepts[2]);
+    s->prev_motion_score = s->score;
+
+    compute_vif2(s->ref_data, s->main_data, w, h, stride, stride, &s->score,
+                 &s->score_num, &s->score_den, s->scores, s->vif_data_buf,
+                 s->vif_temp);
+
+    j = 0;
+    for(i = 0; j < 4; i += 2) {
+        s->nodes[j+2].index = j+3;
+        s->nodes[j+2].value = (double)(slopes[j+3]) * (double)((s->scores[i]) / (s->scores[i+1])) + (double)(intercepts[j+3]);
+        j++;
+    }
+
+    s->prediction = svm_predict(s->svm_model_ptr, s->nodes);
+
+    if (!av_strcasecmp(norm_type, "linear_rescale")) {
+        /** denormalize */
+        s->prediction = (s->prediction - (double)(intercepts[0])) / (double)(slopes[0]);
+    }
+
+    /** score transform */
+    if (s->enable_transform) {
+        double value = 0.0;
+
+        /** quadratic transform */
+        value += (double)(score_transform[0]);
+        value += (double)(score_transform[1]) * s->prediction;
+        value += (double)(score_transform[2]) * s->prediction * s->prediction;
+
+        /** rectification */
+        if (value < s->prediction) {
+            value = s->prediction;
+        }
+
+        s->prediction = value;
+    }
+
+    s->pool_method(&s->vmaf_score, s->prediction);
+    return 0;
+}
+
+static AVFrame *do_vmaf(AVFilterContext *ctx, AVFrame *main, const AVFrame *ref)
+{
+    VMAFContext *s = ctx->priv;
+
+    compute_vmaf(ref, main, s);
+
+    s->nb_frames++;
+
+    return main;
+}
+
+static av_cold int init(AVFilterContext *ctx)
+{
+    VMAFContext *s = ctx->priv;
+
+    if(!s->called) {
+        int i;
+        for(i = 0; i < 5; i++) {
+            s->conv_filter[i] = lrint(FILTER_5[i] * (1 << N));
+        }
+
+        s->svm_model_ptr = svm_load_model(s->model_path, ctx);
+        s->nodes = (svm_node *) av_malloc(sizeof(svm_node) * (6 + 1));
+        s->nodes[6].index = -1;
+        if(!av_strcasecmp(s->pool, "mean")) {
+            s->pool_method = mean;
+        } else if(!av_strcasecmp(s->pool, "min")) {
+            s->vmaf_score = INT_MAX;
+            s->pool_method = min;
+        } else if(!av_strcasecmp(s->pool, "harmonic")) {
+            s->pool_method = harmonic_mean;
+        }
+    }
+
+    s->called = 1;
+    s->dinput.process = do_vmaf;
+
+    return 0;
+}
+
+static int query_formats(AVFilterContext *ctx)
+{
+    static const enum AVPixelFormat pix_fmts[] = {
+        AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P,
+        AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUV422P10LE, AV_PIX_FMT_YUV420P10LE,
+        AV_PIX_FMT_NONE
+    };
+
+    AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
+    if (!fmts_list)
+        return AVERROR(ENOMEM);
+    return ff_set_common_formats(ctx, fmts_list);
+}
+
+static int config_input_ref(AVFilterLink *inlink)
+{
+    AVFilterContext *ctx  = inlink->dst;
+    VMAFContext *s = ctx->priv;
+    ptrdiff_t stride;
+    size_t data_sz;
+    ptrdiff_t adm_buf_stride;
+    size_t adm_buf_sz;
+    ptrdiff_t vif_buf_stride;
+    size_t vif_buf_sz;
+
+    if (ctx->inputs[0]->w != ctx->inputs[1]->w ||
+        ctx->inputs[0]->h != ctx->inputs[1]->h) {
+        av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n");
+        return AVERROR(EINVAL);
+    }
+    if (ctx->inputs[0]->format != ctx->inputs[1]->format) {
+        av_log(ctx, AV_LOG_ERROR, "Inputs must be of same pixel format.\n");
+        return AVERROR(EINVAL);
+    }
+
+    s->desc = av_pix_fmt_desc_get(inlink->format);
+    s->width = ctx->inputs[0]->w;
+    s->height = ctx->inputs[0]->h;
+
+
+    stride = ALIGN_CEIL(s->width * sizeof(float));
+    data_sz = (size_t)stride * s->height;
+
+    if (!(s->ref_data = av_malloc(data_sz))) {
+        return AVERROR(ENOMEM);
+    }
+
+    if (!(s->main_data = av_malloc(data_sz))) {
+        return AVERROR(ENOMEM);
+    }
+
+    adm_buf_stride = ALIGN_CEIL(((s->width + 1) / 2) * sizeof(float));
+    adm_buf_sz = (size_t)adm_buf_stride * ((s->height + 1) / 2);
+
+    if (SIZE_MAX / adm_buf_sz < 35) {
+        av_log(ctx, AV_LOG_ERROR, "error: SIZE_MAX / buf_sz_one < 35.\n");
+        return AVERROR(EINVAL);
+    }
+
+    if (!(s->adm_data_buf = av_malloc(adm_buf_sz * 35))) {
+        return AVERROR(ENOMEM);
+    }
+
+    if (!(s->adm_temp_lo = av_malloc(stride))) {
+        return AVERROR(ENOMEM);
+    }
+    if (!(s->adm_temp_hi = av_malloc(stride))) {
+        return AVERROR(ENOMEM);
+    }
+
+    stride = ALIGN_CEIL(s->width * sizeof(uint16_t));
+    data_sz = (size_t)stride * s->height;
+
+    if (!(s->prev_blur_data = av_mallocz(data_sz))) {
+        return AVERROR(ENOMEM);
+    }
+
+    if (!(s->blur_data = av_mallocz(data_sz))) {
+        return AVERROR(ENOMEM);
+    }
+
+    if (!(s->temp_data = av_mallocz(data_sz))) {
+        return AVERROR(ENOMEM);
+    }
+
+    vif_buf_stride = ALIGN_CEIL(s->width * sizeof(float));
+    vif_buf_sz = (size_t)vif_buf_stride * s->height;
+
+    if (SIZE_MAX / data_sz < 15) {
+        av_log(ctx, AV_LOG_ERROR, "error: SIZE_MAX / buf_sz < 15\n");
+        return AVERROR(EINVAL);
+    }
+
+    if (!(s->vif_data_buf = av_malloc(vif_buf_sz * 16))) {
+        return AVERROR(ENOMEM);
+    }
+
+    if (!(s->vif_temp = av_malloc(s->width * sizeof(float)))) {
+        return AVERROR(ENOMEM);
+    }
+
+    return 0;
+}
+
+static int config_output(AVFilterLink *outlink)
+{
+    AVFilterContext *ctx = outlink->src;
+    VMAFContext *s = ctx->priv;
+    AVFilterLink *mainlink = ctx->inputs[0];
+    int ret;
+
+    outlink->w = mainlink->w;
+    outlink->h = mainlink->h;
+    outlink->time_base = mainlink->time_base;
+    outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
+    outlink->frame_rate = mainlink->frame_rate;
+    if ((ret = ff_dualinput_init(ctx, &s->dinput)) < 0)
+        return ret;
+
+    return 0;
+}
+
+static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref)
+{
+    VMAFContext *s = inlink->dst->priv;
+    return ff_dualinput_filter_frame(&s->dinput, inlink, inpicref);
+}
+
+static int request_frame(AVFilterLink *outlink)
+{
+    VMAFContext *s = outlink->src->priv;
+    return ff_dualinput_request_frame(&s->dinput, outlink);
+}
+
+static av_cold void uninit(AVFilterContext *ctx)
+{
+    VMAFContext *s = ctx->priv;
+
+    if (s->nb_frames > 0) {
+        if(!av_strcasecmp(s->pool, "mean")) {
+            s->vmaf_score = s->vmaf_score / s->nb_frames;
+        } else if(!av_strcasecmp(s->pool, "min")) {
+            s->vmaf_score = s->vmaf_score;
+        } else if(!av_strcasecmp(s->pool, "harmonic")) {
+            s->vmaf_score = 1.0 / (s->vmaf_score / s->nb_frames) - 1.0;
+        }
+
+        av_log(ctx, AV_LOG_INFO, "VMAF Score: %.3f\n", s->vmaf_score);
+
+        svm_free_and_destroy_model((svm_model **)&s->svm_model_ptr);
+
+        av_free(s->ref_data);
+        av_free(s->main_data);
+        av_free(s->adm_data_buf);
+        av_free(s->adm_temp_lo);
+        av_free(s->adm_temp_hi);
+        av_free(s->prev_blur_data);
+        av_free(s->blur_data);
+        av_free(s->temp_data);
+        av_free(s->vif_data_buf);
+        av_free(s->vif_temp);
+    }
+
+    ff_dualinput_uninit(&s->dinput);
+}
+
+static const AVFilterPad vmaf_inputs[] = {
+    {
+        .name         = "main",
+        .type         = AVMEDIA_TYPE_VIDEO,
+        .filter_frame = filter_frame,
+    },{
+        .name         = "reference",
+        .type         = AVMEDIA_TYPE_VIDEO,
+        .filter_frame = filter_frame,
+        .config_props = config_input_ref,
+    },
+    { NULL }
+};
+
+static const AVFilterPad vmaf_outputs[] = {
+    {
+        .name          = "default",
+        .type          = AVMEDIA_TYPE_VIDEO,
+        .config_props  = config_output,
+        .request_frame = request_frame,
+    },
+    { NULL }
+};
+
+AVFilter ff_vf_vmaf = {
+    .name          = "vmaf",
+    .description   = NULL_IF_CONFIG_SMALL("Calculate the VMAF between two video streams."),
+    .init          = init,
+    .uninit        = uninit,
+    .query_formats = query_formats,
+    .priv_size     = sizeof(VMAFContext),
+    .priv_class    = &vmaf_class,
+    .inputs        = vmaf_inputs,
+    .outputs       = vmaf_outputs,
+};
diff --git a/libavfilter/vmaf.h b/libavfilter/vmaf.h
new file mode 100644
index 0000000..6d16f60
--- /dev/null
+++ b/libavfilter/vmaf.h
@@ -0,0 +1,138 @@ 
+/*
+ * Copyright (c) 2017 Ronald S. Bultje <rsbultje@gmail.com>
+ * Copyright (c) 2017 Ashish Pratap Singh <ashk43712@gmail.com>
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * Calculate the VMAF between two input videos.
+ */
+
+/** Normalization type */
+const char *norm_type = "linear_rescale";
+
+/** cliping to be applied on vmaf score */
+const double score_clip[2] = {
+    0.0,
+    100.0
+};
+
+/** feature vector */
+const char *feature_names[6] = {
+    "VMAF_feature_adm2_score",
+    "VMAF_feature_motion2_score",
+    "VMAF_feature_vif_scale0_score",
+    "VMAF_feature_vif_scale1_score",
+    "VMAF_feature_vif_scale2_score",
+    "VMAF_feature_vif_scale3_score"
+};
+
+const double intercepts[7] = {
+    -0.3092981927591963,
+    -1.7993968597186747,
+    -0.003017198086831897,
+    -0.1728125095425364,
+    -0.5294309090081222,
+    -0.7577185792093722,
+    -1.083428597549764
+};
+
+const double slopes[7] = {
+    0.012020766332648465,
+    2.8098077502505414,
+    0.06264407466686016,
+    1.222763456258933,
+    1.5360318811084146,
+    1.7620864995501058,
+    2.08656468286432
+};
+
+/** transform constants */
+const double score_transform[3] = {
+    1.70674692,
+    1.72643844,
+    -0.00705305
+};
+
+typedef struct {
+    int index;
+    double value;
+} svm_node;
+
+typedef struct {
+    int l;
+    double *y;
+    svm_node **x;
+} svm_problem;
+
+typedef struct {
+    int svm_type;
+    int kernel_type;
+    int degree;    /** for poly */
+    double gamma;    /** for poly/rbf/sigmoid */
+    double coef0;    /** for poly/sigmoid */
+
+    /** these are for training only */
+    double cache_size; /** in MB */
+    double eps;    /** stopping criteria */
+    double C;    /** for C_SVC, EPSILON_SVR and NU_SVR */
+    int nr_weight;        /** for C_SVC */
+    int *weight_label;    /** for C_SVC */
+    double* weight;        /** for C_SVC */
+    double nu;    /** for NU_SVC, ONE_CLASS, and NU_SVR */
+    double p;    /** for EPSILON_SVR */
+    int shrinking;    /** use the shrinking heuristics */
+    int probability; /** do probability estimates */
+} svm_parameter;
+
+/**
+ * svm_model
+ */
+typedef struct {
+    svm_parameter param;    /** parameter */
+    int nr_class;        /** number of classes, = 2 in regression/one class svm */
+    int l;            /** total #SV */
+    svm_node **SV;        /** SVs (SV[l]) */
+    double **sv_coef;    /** coefficients for SVs in decision functions (sv_coef[k-1][l]) */
+    double *rho;        /** constants in decision functions (rho[k*(k-1)/2]) */
+    double *probA;        /** pariwise probability information */
+    double *probB;
+    int *sv_indices;        /** sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */
+
+    /** for classification only */
+
+    int *label;        /** label of each class (label[k]) */
+    int *nSV;        /** number of SVs for each class (nSV[k]) */
+    /** nSV[0] + nSV[1] + ... + nSV[k-1] = l */
+    int free_sv;        /** 1 if svm_model is created by svm_load_model*/
+    /** 0 if svm_model is created by svm_train */
+} svm_model;
+
+
+typedef struct {
+    const svm_node **x;
+    double *x_square;
+
+    // svm_parameter
+    const int kernel_type;
+    const int degree;
+    const double gamma;
+    const double coef0;
+} Kernel;
+