diff mbox series

[FFmpeg-devel] libavfilter/dnn: add batch mode for async execution

Message ID 20210108083634.16805-1-yejun.guo@intel.com
State Superseded
Headers show
Series [FFmpeg-devel] libavfilter/dnn: add batch mode for async execution
Related show

Checks

Context Check Description
andriy/x86_make success Make finished
andriy/x86_make_fate success Make fate finished
andriy/PPC64_make success Make finished
andriy/PPC64_make_fate success Make fate finished

Commit Message

Guo, Yejun Jan. 8, 2021, 8:36 a.m. UTC
the default number of batch_size is 1

Signed-off-by: Xie, Lin <lin.xie@intel.com>
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
---
 libavfilter/dnn/dnn_backend_openvino.c | 157 +++++++++++++++++++++----
 libavfilter/dnn/dnn_backend_openvino.h |   1 +
 libavfilter/dnn/dnn_interface.c        |   1 +
 libavfilter/dnn_interface.h            |   2 +
 libavfilter/vf_dnn_processing.c        |  36 +++++-
 5 files changed, 173 insertions(+), 24 deletions(-)

Comments

Guo, Yejun Jan. 10, 2021, 11:54 a.m. UTC | #1
> -----Original Message-----
> From: Guo, Yejun <yejun.guo@intel.com>
> Sent: 2021年1月8日 16:37
> To: ffmpeg-devel@ffmpeg.org
> Cc: Guo, Yejun <yejun.guo@intel.com>
> Subject: [PATCH] libavfilter/dnn: add batch mode for async execution
> 
> the default number of batch_size is 1
> 
> Signed-off-by: Xie, Lin <lin.xie@intel.com>
> Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
> Signed-off-by: Guo, Yejun <yejun.guo@intel.com>
> ---
>  libavfilter/dnn/dnn_backend_openvino.c | 157 +++++++++++++++++++++----
>  libavfilter/dnn/dnn_backend_openvino.h |   1 +
>  libavfilter/dnn/dnn_interface.c        |   1 +
>  libavfilter/dnn_interface.h            |   2 +
>  libavfilter/vf_dnn_processing.c        |  36 +++++-
>  5 files changed, 173 insertions(+), 24 deletions(-)
> 
> diff --git a/libavfilter/dnn/dnn_backend_openvino.c
> b/libavfilter/dnn/dnn_backend_openvino.c
> index d27e451eea..cb1bc3d22d 100644
> --- a/libavfilter/dnn/dnn_backend_openvino.c
> +++ b/libavfilter/dnn/dnn_backend_openvino.c

please ignore this patch, it has some issue, will send out V2 later, thanks.
diff mbox series

Patch

diff --git a/libavfilter/dnn/dnn_backend_openvino.c b/libavfilter/dnn/dnn_backend_openvino.c
index d27e451eea..cb1bc3d22d 100644
--- a/libavfilter/dnn/dnn_backend_openvino.c
+++ b/libavfilter/dnn/dnn_backend_openvino.c
@@ -37,6 +37,7 @@ 
 typedef struct OVOptions{
     char *device_type;
     int nireq;
+    int batch_size;
 } OVOptions;
 
 typedef struct OVContext {
@@ -70,7 +71,8 @@  typedef struct TaskItem {
 
 typedef struct RequestItem {
     ie_infer_request_t *infer_request;
-    TaskItem *task;
+    TaskItem **tasks;
+    int task_count;
     ie_complete_call_back_t callback;
 } RequestItem;
 
@@ -83,6 +85,7 @@  typedef struct RequestItem {
 static const AVOption dnn_openvino_options[] = {
     { "device", "device to run model", OFFSET(options.device_type), AV_OPT_TYPE_STRING, { .str = "CPU" }, 0, 0, FLAGS },
     { "nireq",  "number of request",   OFFSET(options.nireq),       AV_OPT_TYPE_INT,    { .i64 = 0 },     0, INT_MAX, FLAGS },
+    { "batch_size",  "batch size per request", OFFSET(options.batch_size),  AV_OPT_TYPE_INT,    { .i64 = 1 },     1, 1000, FLAGS},
     { NULL }
 };
 
@@ -100,7 +103,19 @@  static DNNDataType precision_to_datatype(precision_e precision)
     }
 }
 
-static DNNReturnType fill_model_input_ov(OVModel *ov_model, TaskItem *task, RequestItem *request)
+static int get_datatype_size(DNNDataType dt)
+{
+    switch (dt)
+    {
+    case DNN_FLOAT:
+        return sizeof(float);
+    default:
+        av_assert0(!"not supported yet.");
+        return 1;
+    }
+}
+
+static DNNReturnType fill_model_input_ov(OVModel *ov_model, RequestItem *request)
 {
     dimensions_t dims;
     precision_e precision;
@@ -109,6 +124,7 @@  static DNNReturnType fill_model_input_ov(OVModel *ov_model, TaskItem *task, Requ
     IEStatusCode status;
     DNNData input;
     ie_blob_t *input_blob = NULL;
+    TaskItem *task = request->tasks[0];
 
     status = ie_infer_request_get_blob(request->infer_request, task->input_name, &input_blob);
     if (status != OK) {
@@ -134,12 +150,19 @@  static DNNReturnType fill_model_input_ov(OVModel *ov_model, TaskItem *task, Requ
     input.channels = dims.dims[1];
     input.data = blob_buffer.buffer;
     input.dt = precision_to_datatype(precision);
-    if (task->do_ioproc) {
-        if (ov_model->model->pre_proc != NULL) {
-            ov_model->model->pre_proc(task->in_frame, &input, ov_model->model->filter_ctx);
-        } else {
-            proc_from_frame_to_dnn(task->in_frame, &input, ctx);
+
+    av_assert0(request->task_count <= dims.dims[0]);
+    for (int i = 0; i < request->task_count; ++i) {
+        task = request->tasks[i];
+        if (task->do_ioproc) {
+            if (ov_model->model->pre_proc != NULL) {
+                ov_model->model->pre_proc(task->in_frame, &input, ov_model->model->filter_ctx);
+            } else {
+                proc_from_frame_to_dnn(task->in_frame, &input, ctx);
+            }
         }
+        input.data = (uint8_t *)input.data
+                     + input.width * input.height * input.channels * get_datatype_size(input.dt);
     }
     ie_blob_free(&input_blob);
 
@@ -152,7 +175,7 @@  static void infer_completion_callback(void *args)
     precision_e precision;
     IEStatusCode status;
     RequestItem *request = args;
-    TaskItem *task = request->task;
+    TaskItem *task = request->tasks[0];
     ie_blob_t *output_blob = NULL;
     ie_blob_buffer_t blob_buffer;
     DNNData output;
@@ -194,41 +217,65 @@  static void infer_completion_callback(void *args)
     output.width    = dims.dims[3];
     output.dt       = precision_to_datatype(precision);
     output.data     = blob_buffer.buffer;
-    if (task->do_ioproc) {
-        if (task->ov_model->model->post_proc != NULL) {
-            task->ov_model->model->post_proc(task->out_frame, &output, task->ov_model->model->filter_ctx);
+
+    av_assert0(request->task_count <= dims.dims[0]);
+    for (int i = 0; i < request->task_count; ++i) {
+        task = request->tasks[i];
+        if (task->do_ioproc) {
+            if (task->ov_model->model->post_proc != NULL) {
+                task->ov_model->model->post_proc(task->out_frame, &output, task->ov_model->model->filter_ctx);
+            } else {
+                proc_from_dnn_to_frame(task->out_frame, &output, ctx);
+            }
         } else {
-            proc_from_dnn_to_frame(task->out_frame, &output, ctx);
+            task->out_frame->width = output.width;
+            task->out_frame->height = output.height;
         }
-    } else {
-        task->out_frame->width = output.width;
-        task->out_frame->height = output.height;
+        task->done = 1;
+        output.data = (uint8_t *)output.data
+                      + output.width * output.height * output.channels * get_datatype_size(output.dt);
     }
     ie_blob_free(&output_blob);
 
+    request->task_count = 0;
+
     if (task->async) {
-        request->task = NULL;
         if (ff_safe_queue_push_back(task->ov_model->request_queue, request) < 0) {
             av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n");
             return;
         }
     }
-
-    task->done = 1;
 }
 
 static DNNReturnType execute_model_ov(TaskItem *task, RequestItem *request)
 {
     IEStatusCode status;
+    DNNReturnType ret;
     OVContext *ctx = &task->ov_model->ctx;
 
-    DNNReturnType ret = fill_model_input_ov(task->ov_model, task, request);
-    if (ret != DNN_SUCCESS) {
-        return ret;
+    if (!request->tasks) {
+        request->tasks = av_malloc_array(ctx->options.batch_size, sizeof(*request->tasks));
+        if (!request->tasks) {
+            av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for tasks\n");
+            return DNN_ERROR;
+        }
+        request->task_count = 0;
     }
 
+    request->tasks[request->task_count++] = task;
+
     if (task->async) {
-        request->task = task;
+        if (request->task_count < ctx->options.batch_size) {
+            if (ff_safe_queue_push_back(task->ov_model->request_queue, request) < 0) {
+                av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n");
+                return DNN_ERROR;
+            }
+            return DNN_SUCCESS;
+        }
+        ret = fill_model_input_ov(task->ov_model, request);
+        if (ret != DNN_SUCCESS) {
+            return ret;
+        }
         status = ie_infer_set_completion_callback(request->infer_request, &request->callback);
         if (status != OK) {
             av_log(ctx, AV_LOG_ERROR, "Failed to set completion callback for inference\n");
@@ -241,12 +288,15 @@  static DNNReturnType execute_model_ov(TaskItem *task, RequestItem *request)
         }
         return DNN_SUCCESS;
     } else {
+        ret = fill_model_input_ov(task->ov_model, request);
+        if (ret != DNN_SUCCESS) {
+            return ret;
+        }
         status = ie_infer_request_infer(request->infer_request);
         if (status != OK) {
             av_log(ctx, AV_LOG_ERROR, "Failed to start synchronous model inference\n");
             return DNN_ERROR;
         }
-        request->task = task;
         infer_completion_callback(request);
         return task->done ? DNN_SUCCESS : DNN_ERROR;
     }
@@ -343,6 +393,8 @@  static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu
     task.ov_model = ov_model;
 
     request.infer_request = ov_model->infer_request;
+    request.tasks = NULL;
+    request.task_count = 0;
 
     ret = execute_model_ov(&task, &request);
     *output_width = out_frame->width;
@@ -393,6 +445,23 @@  DNNModel *ff_dnn_load_model_ov(const char *model_filename, const char *options,
     if (status != OK)
         goto err;
 
+    if (ctx->options.batch_size <= 0) {
+        ctx->options.batch_size = 1;
+    }
+
+    if (ctx->options.batch_size > 1) {
+        input_shapes_t input_shapes;
+        status = ie_network_get_input_shapes(ov_model->network, &input_shapes);
+        if (status != OK)
+            goto err;
+        for (int i = 0; i < input_shapes.shape_num; i++)
+            input_shapes.shapes[i].shape.dims[0] = ctx->options.batch_size;
+        status = ie_network_reshape(ov_model->network, input_shapes);
+        ie_network_input_shapes_free(&input_shapes);
+        if (status != OK)
+            goto err;
+    }
+
     status = ie_core_load_network(ov_model->core, ov_model->network, ctx->options.device_type, &config, &ov_model->exe_network);
     if (status != OK) {
         av_log(ctx, AV_LOG_ERROR, "Failed to init OpenVINO model\n");
@@ -497,6 +566,8 @@  DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_n
     task.ov_model = ov_model;
 
     request.infer_request = ov_model->infer_request;
+    request.tasks = NULL;
+    request.task_count = 0;
 
     return execute_model_ov(&task, &request);
 }
@@ -569,6 +640,43 @@  DNNAsyncStatusType ff_dnn_get_async_result_ov(const DNNModel *model, AVFrame **i
     return DAST_SUCCESS;
 }
 
+DNNReturnType ff_dnn_flush_ov(const DNNModel *model)
+{
+    OVModel *ov_model = (OVModel *)model->model;
+    OVContext *ctx = &ov_model->ctx;
+    RequestItem *request;
+    IEStatusCode status;
+    DNNReturnType ret;
+
+    request = ff_safe_queue_pop_front(ov_model->request_queue);
+    if (!request) {
+        av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
+        return DNN_ERROR;
+    }
+
+    if (request->task_count == 0) {
+        // no pending task need to flush
+        return DNN_ERROR;
+    }
+
+    ret = fill_model_input_ov(ov_model, request);
+    if (ret != DNN_SUCCESS) {
+        return ret;
+    }
+    status = ie_infer_set_completion_callback(request->infer_request, &request->callback);
+    if (status != OK) {
+        av_log(ctx, AV_LOG_ERROR, "Failed to set completion callback for inference\n");
+        return DNN_ERROR;
+    }
+    status = ie_infer_request_infer_async(request->infer_request);
+    if (status != OK) {
+        av_log(ctx, AV_LOG_ERROR, "Failed to start async inference\n");
+        return DNN_ERROR;
+    }
+
+    return DNN_SUCCESS;
+}
+
 void ff_dnn_free_model_ov(DNNModel **model)
 {
     if (*model){
@@ -578,12 +686,15 @@  void ff_dnn_free_model_ov(DNNModel **model)
             if (item && item->infer_request) {
                 ie_infer_request_free(&item->infer_request);
             }
+            av_freep(&item->tasks);
             av_freep(&item);
         }
         ff_safe_queue_destroy(ov_model->request_queue);
 
         while (ff_queue_size(ov_model->task_queue) != 0) {
             TaskItem *item = ff_queue_pop_front(ov_model->task_queue);
+            av_frame_free(&item->in_frame);
+            av_frame_free(&item->out_frame);
             av_freep(&item);
         }
         ff_queue_destroy(ov_model->task_queue);
diff --git a/libavfilter/dnn/dnn_backend_openvino.h b/libavfilter/dnn/dnn_backend_openvino.h
index 1b70150040..23b819440e 100644
--- a/libavfilter/dnn/dnn_backend_openvino.h
+++ b/libavfilter/dnn/dnn_backend_openvino.h
@@ -36,6 +36,7 @@  DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, const char *input_n
 DNNReturnType ff_dnn_execute_model_async_ov(const DNNModel *model, const char *input_name, AVFrame *in_frame,
                                             const char **output_names, uint32_t nb_output, AVFrame *out_frame);
 DNNAsyncStatusType ff_dnn_get_async_result_ov(const DNNModel *model, AVFrame **in, AVFrame **out);
+DNNReturnType ff_dnn_flush_ov(const DNNModel *model);
 
 void ff_dnn_free_model_ov(DNNModel **model);
 
diff --git a/libavfilter/dnn/dnn_interface.c b/libavfilter/dnn/dnn_interface.c
index e1b41a21e1..02e532fc1b 100644
--- a/libavfilter/dnn/dnn_interface.c
+++ b/libavfilter/dnn/dnn_interface.c
@@ -60,6 +60,7 @@  DNNModule *ff_get_dnn_module(DNNBackendType backend_type)
         dnn_module->execute_model = &ff_dnn_execute_model_ov;
         dnn_module->execute_model_async = &ff_dnn_execute_model_async_ov;
         dnn_module->get_async_result = &ff_dnn_get_async_result_ov;
+        dnn_module->flush = &ff_dnn_flush_ov;
         dnn_module->free_model = &ff_dnn_free_model_ov;
     #else
         av_freep(&dnn_module);
diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h
index 9533c88829..ff338ea084 100644
--- a/libavfilter/dnn_interface.h
+++ b/libavfilter/dnn_interface.h
@@ -82,6 +82,8 @@  typedef struct DNNModule{
                                          const char **output_names, uint32_t nb_output, AVFrame *out_frame);
     // Retrieve inference result.
     DNNAsyncStatusType (*get_async_result)(const DNNModel *model, AVFrame **in, AVFrame **out);
+    // Flush all the pending tasks.
+    DNNReturnType (*flush)(const DNNModel *model);
     // Frees memory allocated for model.
     void (*free_model)(DNNModel **model);
 } DNNModule;
diff --git a/libavfilter/vf_dnn_processing.c b/libavfilter/vf_dnn_processing.c
index fff5696a31..5033bbf482 100644
--- a/libavfilter/vf_dnn_processing.c
+++ b/libavfilter/vf_dnn_processing.c
@@ -33,6 +33,7 @@ 
 #include "formats.h"
 #include "internal.h"
 #include "libswscale/swscale.h"
+#include "libavutil/time.h"
 
 typedef struct DnnProcessingContext {
     const AVClass *class;
@@ -329,6 +330,37 @@  static int filter_frame(AVFilterLink *inlink, AVFrame *in)
     return ff_filter_frame(outlink, out);
 }
 
+static int flush_frame(AVFilterLink *outlink, int64_t pts, int64_t *out_pts)
+{
+    DnnProcessingContext *ctx = outlink->src->priv;
+    DNNReturnType ret;
+    DNNAsyncStatusType async_state;
+
+    ret = (ctx->dnn_module->flush)(ctx->model);
+    if (ret != DNN_SUCCESS) {
+        return -1;
+    }
+
+    do {
+        AVFrame *in_frame = NULL;
+        AVFrame *out_frame = NULL;
+        async_state = (ctx->dnn_module->get_async_result)(ctx->model, &in_frame, &out_frame);
+        if (out_frame) {
+            if (isPlanarYUV(in_frame->format))
+                copy_uv_planes(ctx, out_frame, in_frame);
+            av_frame_free(&in_frame);
+            ret = ff_filter_frame(outlink, out_frame);
+            if (ret < 0)
+                return ret;
+            if (out_pts)
+                *out_pts = out_frame->pts + pts;
+        }
+        av_usleep(5000);
+    } while (async_state >= DAST_NOT_READY);
+
+    return 0;
+}
+
 static int activate_sync(AVFilterContext *filter_ctx)
 {
     AVFilterLink *inlink = filter_ctx->inputs[0];
@@ -423,7 +455,9 @@  static int activate_async(AVFilterContext *filter_ctx)
 
     if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
         if (status == AVERROR_EOF) {
-            ff_outlink_set_status(outlink, status, pts);
+            int64_t out_pts = pts;
+            ret = flush_frame(outlink, pts, &out_pts);
+            ff_outlink_set_status(outlink, status, out_pts);
             return ret;
         }
     }