From patchwork Mon Mar 6 13:55:46 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Ting Fu X-Patchwork-Id: 40600 Delivered-To: ffmpegpatchwork2@gmail.com Received: by 2002:a05:6a20:d046:b0:cd:afd7:272c with SMTP id hv6csp2923442pzb; Mon, 6 Mar 2023 06:12:22 -0800 (PST) X-Google-Smtp-Source: AK7set+vXCjEZ6B8ZleKeYZhDjF2qUZekEzG4eXZ1GXP7Wj8u5rSjXIMIsE8S6XQINQJTAbEcDAG X-Received: by 2002:a17:906:58c3:b0:878:625c:c8ff with SMTP id e3-20020a17090658c300b00878625cc8ffmr13473996ejs.54.1678111942061; Mon, 06 Mar 2023 06:12:22 -0800 (PST) ARC-Seal: i=1; a=rsa-sha256; t=1678111942; cv=none; d=google.com; s=arc-20160816; b=zPOzhQUCZ4yHKeMohEmNqNqYQg9PCeE0OTM2j6xNO2Yp7toXBdgpAmTzWpXhzEiVCO KtEEPhmX9pnS8KhzXOiU/dXPMRpW0eaIbqtbJMuaysQJ7qTRlwSZ4mtcYiE7BluEYCsm Mjgzb+2xl3LFIx2UZFlKEKZxwGmiCmF4Dfgp+4HIAzodXYALfVjT11Pgs8/PZ4G8l3uk OLVeFmawBE8XGwAVsf8ff/6DaY8Wk5z6ZW1Psr6decC5ICU6HlhiWup0EU+MwsGbDAd+ evEVjieAoyA3aFyodKJlVcwMBYsSQzucSt86vWoPUTMeSWE726Xa6nrfXxkwlC9eFgTH IHWQ== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=sender:errors-to:content-transfer-encoding:mime-version:reply-to :list-subscribe:list-help:list-post:list-archive:list-unsubscribe :list-id:precedence:subject:message-id:date:to:from:dkim-signature :delivered-to; bh=ZCP1ZME4H8vKCoG2Pb6DNGNWWlpKSpUAEFRPgzckHLk=; b=qkooGDZzv7AWgTXRv+OMgLEigK19jEDSiR49o/KZoSjHxkQvBK+4s/hWY6Un2fbs2x GrOtVx6hBl3caebogIPrm2G1gRXggTF/orLBGepfq7gm5aNhf3jMS7SmO7zEYLcCpvug j82j1vUDsgHW9c6GzhaYlL5RQpbhC6BulpOn4hioE9zSBPAwKx9r0Pb+jaMW+nueRDMr Ouf8eNS0G7ro8ohLY3Uy6S3Lj8huxe9shA6BY1WYVmP/4x8KfywpjgswMGf+3BkZsRWB VfARKMm4L1XmIHTNw8d4Y0ddsIzIDa0Axo+Vje8eZfv9jYhdCjBIv+BUHBLRHQ9po2tz lsRQ== ARC-Authentication-Results: i=1; mx.google.com; dkim=neutral (body hash did not verify) header.i=@intel.com header.s=Intel header.b="T/0/TIp+"; spf=pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) smtp.mailfrom=ffmpeg-devel-bounces@ffmpeg.org Return-Path: Received: from ffbox0-bg.mplayerhq.hu (ffbox0-bg.ffmpeg.org. [79.124.17.100]) by mx.google.com with ESMTP id e18-20020a17090658d200b008b194cc10acsi12905181ejs.381.2023.03.06.06.12.20; Mon, 06 Mar 2023 06:12:22 -0800 (PST) Received-SPF: pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) client-ip=79.124.17.100; Authentication-Results: mx.google.com; dkim=neutral (body hash did not verify) header.i=@intel.com header.s=Intel header.b="T/0/TIp+"; spf=pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) smtp.mailfrom=ffmpeg-devel-bounces@ffmpeg.org Received: from [127.0.1.1] (localhost [127.0.0.1]) by ffbox0-bg.mplayerhq.hu (Postfix) with ESMTP id D3AE268BA97; Mon, 6 Mar 2023 16:12:16 +0200 (EET) X-Original-To: ffmpeg-devel@ffmpeg.org Delivered-To: ffmpeg-devel@ffmpeg.org Received: from mga18.intel.com (mga18.intel.com [134.134.136.126]) by ffbox0-bg.mplayerhq.hu (Postfix) with ESMTPS id 6303F68B2D8 for ; Mon, 6 Mar 2023 16:12:09 +0200 (EET) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=intel.com; i=@intel.com; q=dns/txt; s=Intel; t=1678111934; x=1709647934; h=from:to:subject:date:message-id; bh=rMK1pDvF1qhNYheRrjSQOTDovr8JjU1BmgVJEaO2nAg=; b=T/0/TIp++nnIOoHJ6Pn4XJjZ/SFlCRIVv+xPZxWQP2oRpu2ffBuKbYiv fuOUJF60l80GZhbiGjGd1bqe08So9SV16w8nv7k7/BD6KyEe2w5J23Kxo d5j22LFwMm2ZhnlrHJcWtvTAgH6RyUAvS28wOfRWMQLwIgJ/pjCrm3nif xhnLcL0G/ulMEBPcwKPBA60d+jlUNDFijn40CxXfcoAIlcAprddSskAZn l2cE0VBJ1HYydsI9//smmeioAbFK85U6SNHpQOkXUz7rGHd0MX8n4D+Qy oLDAekSX5yH3rLyZWtn0C74AtFgvlhd+IhGS2ZGMj/Uj15n6EnJORB0c9 Q==; X-IronPort-AV: E=McAfee;i="6500,9779,10641"; a="319390199" X-IronPort-AV: E=Sophos;i="5.98,238,1673942400"; d="scan'208";a="319390199" Received: from orsmga004.jf.intel.com ([10.7.209.38]) by orsmga106.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 06 Mar 2023 06:12:06 -0800 X-ExtLoop1: 1 X-IronPort-AV: E=McAfee;i="6500,9779,10641"; a="800010516" X-IronPort-AV: E=Sophos;i="5.98,238,1673942400"; d="scan'208";a="800010516" Received: from semmer-ubuntu.sh.intel.com ([10.239.159.83]) by orsmga004.jf.intel.com with ESMTP; 06 Mar 2023 06:12:05 -0800 From: Ting Fu To: ffmpeg-devel@ffmpeg.org Date: Mon, 6 Mar 2023 21:55:46 +0800 Message-Id: <20230306135548.23001-1-ting.fu@intel.com> X-Mailer: git-send-email 2.17.1 Subject: [FFmpeg-devel] [PATCH V6 1/3] lavfi/dnn: Mark native backend as unsupported X-BeenThere: ffmpeg-devel@ffmpeg.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: FFmpeg development discussions and patches List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Reply-To: FFmpeg development discussions and patches MIME-Version: 1.0 Errors-To: ffmpeg-devel-bounces@ffmpeg.org Sender: "ffmpeg-devel" X-TUID: ueVLOnDX/Yb1 Native is deprecated value for backed_type option. Modify related error message. Signed-off-by: Ting Fu --- libavfilter/dnn/dnn_interface.c | 10 +--------- 1 file changed, 1 insertion(+), 9 deletions(-) diff --git a/libavfilter/dnn/dnn_interface.c b/libavfilter/dnn/dnn_interface.c index 554a36b0dc..5b1695a1dd 100644 --- a/libavfilter/dnn/dnn_interface.c +++ b/libavfilter/dnn/dnn_interface.c @@ -24,7 +24,6 @@ */ #include "../dnn_interface.h" -#include "dnn_backend_native.h" #include "dnn_backend_tf.h" #include "dnn_backend_openvino.h" #include "libavutil/mem.h" @@ -39,13 +38,6 @@ DNNModule *ff_get_dnn_module(DNNBackendType backend_type) } switch(backend_type){ - case DNN_NATIVE: - dnn_module->load_model = &ff_dnn_load_model_native; - dnn_module->execute_model = &ff_dnn_execute_model_native; - dnn_module->get_result = &ff_dnn_get_result_native; - dnn_module->flush = &ff_dnn_flush_native; - dnn_module->free_model = &ff_dnn_free_model_native; - break; case DNN_TF: #if (CONFIG_LIBTENSORFLOW == 1) dnn_module->load_model = &ff_dnn_load_model_tf; @@ -71,7 +63,7 @@ DNNModule *ff_get_dnn_module(DNNBackendType backend_type) #endif break; default: - av_log(NULL, AV_LOG_ERROR, "Module backend_type is not native or tensorflow\n"); + av_log(NULL, AV_LOG_ERROR, "Module backend_type is not supported or enabled.\n"); av_freep(&dnn_module); return NULL; } From patchwork Mon Mar 6 13:55:47 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Ting Fu X-Patchwork-Id: 40601 Delivered-To: ffmpegpatchwork2@gmail.com Received: by 2002:a05:6a20:d046:b0:cd:afd7:272c with SMTP id hv6csp2923569pzb; Mon, 6 Mar 2023 06:12:33 -0800 (PST) X-Google-Smtp-Source: AK7set/fpVM+IAgQK2tfoMc+QB/WjL9IiL+VLhcUCOdWEG2O+EiNWE4jXl/dDPgRyZMmwPaGSzA4 X-Received: by 2002:a17:907:16a4:b0:8af:3fcc:2b05 with SMTP id hc36-20020a17090716a400b008af3fcc2b05mr14281675ejc.12.1678111953155; Mon, 06 Mar 2023 06:12:33 -0800 (PST) ARC-Seal: i=1; a=rsa-sha256; t=1678111953; cv=none; d=google.com; s=arc-20160816; b=LUVaCf3/en4/R/aL3Lq0IRbwX6XGvy2/kFaTilKSblVmv6o3lZvC8pfc05+eRUHOlO nc/L0gEXVcFqR+CD+YtXjs+xs88TNOKWB6au/1KR5Z8z6EdPmGWlvmRlPZD/tcXcgytK QLVDP3JiMB5mTS+cVbnNFzbY57J6tXl89fwIcdTF0nMkUnilM2VJHoVay74WwH2Fdapn VZBs+GzbGXP7hlYLDF+24GX4Rw+MOKnJeA8Jv1p0OFl0AexhZH7TR0zoDJ9OqqmIpD7J 4YCSkADxnwEhJvdkLM6/vdIqNiDuZC7c8Rlnosr6Ob9LSfHlhlUiKsqtnmNQu2pKd3NG HiMQ== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=sender:errors-to:content-transfer-encoding:mime-version:reply-to :list-subscribe:list-help:list-post:list-archive:list-unsubscribe :list-id:precedence:subject:references:in-reply-to:message-id:date :to:from:dkim-signature:delivered-to; bh=wEXLDdgirhy/GAkqBhMdM+YzMTzJd4dnU+4QP/oGDc4=; b=bJGgylO1+vYdmdEgxjPFY0r7ozo95qsUnXrj6Iza0e7EA2qJI0t55E4CHKCsAUTzSf hUSbwqznAXxgw1MBRWw67UaJ1s2GZ549tJV64FR4aWBJ4B0O1BTmOP2Ki1+DU4BZ4tM+ gUuHQgPUZEZV2YtireVb52v2dO/atcwQbQSXtSG8CALLZZ/PzuYZHv65ztXf0QUg/KK6 wTAhqFrkoyeIDX9AnPma6lG9iLrnckmyzIX9HS+QpU64D9K0xBEDIvYMQisXjKKPSgNp zRtdW6AfdHisx++pvjHSlbsCR3CjYskxgSh6J7QRxe0iJH73JCHJgCBJo33VGbaOd0ar 2n6g== ARC-Authentication-Results: i=1; mx.google.com; dkim=neutral (body hash did not verify) header.i=@intel.com header.s=Intel header.b=cBNaZ5XA; spf=pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) smtp.mailfrom=ffmpeg-devel-bounces@ffmpeg.org Return-Path: Received: from ffbox0-bg.mplayerhq.hu (ffbox0-bg.ffmpeg.org. [79.124.17.100]) by mx.google.com with ESMTP id be14-20020a0564021a2e00b004a20d8b233esi5964793edb.317.2023.03.06.06.12.32; Mon, 06 Mar 2023 06:12:33 -0800 (PST) Received-SPF: pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) client-ip=79.124.17.100; Authentication-Results: mx.google.com; dkim=neutral (body hash did not verify) header.i=@intel.com header.s=Intel header.b=cBNaZ5XA; spf=pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) smtp.mailfrom=ffmpeg-devel-bounces@ffmpeg.org Received: from [127.0.1.1] (localhost [127.0.0.1]) by ffbox0-bg.mplayerhq.hu (Postfix) with ESMTP id 0DA4668BAF6; Mon, 6 Mar 2023 16:12:20 +0200 (EET) X-Original-To: ffmpeg-devel@ffmpeg.org Delivered-To: ffmpeg-devel@ffmpeg.org Received: from mga18.intel.com (mga18.intel.com [134.134.136.126]) by ffbox0-bg.mplayerhq.hu (Postfix) with ESMTPS id 3258C68BAF6 for ; Mon, 6 Mar 2023 16:12:12 +0200 (EET) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=intel.com; i=@intel.com; q=dns/txt; s=Intel; t=1678111937; x=1709647937; h=from:to:subject:date:message-id:in-reply-to:references; bh=ZY1HQH2Q77Q+K6FIG8k8n547HGP1ad6dcaQKbRDRThw=; b=cBNaZ5XAUYnoNAOKIB2UlLBYYKTTok1j3JGyXIRlwgg58C4mT+f71usY d1omnCHP3VTft6WXCAzp2JMvMFwZ+LKAond4r6CuZj8udu2AdghmPo3lR /JUVNfj3/tTSG0zjSdA1LHUabY9qLp1VnDuTVyAnt8hXNoe7p0Wlspobf gHrP/nU2UMSD6+Z/drv/KzrS+5J6IVMy8DA74qj5hVoZxxtp4nlwmsJyR wrrfNFX1hJ31su/ex+yAnf7JOPY0HXA/7C+GqQWe0Jv64LbmkB3TQGaXb I7AmAPQ33IKmu+bdLhczhTlfbimoC1xY1GGQmJoYmwGUXH/xcpAL1taUX g==; X-IronPort-AV: E=McAfee;i="6500,9779,10641"; a="319390208" X-IronPort-AV: E=Sophos;i="5.98,238,1673942400"; d="scan'208";a="319390208" Received: from orsmga004.jf.intel.com ([10.7.209.38]) by orsmga106.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 06 Mar 2023 06:12:07 -0800 X-ExtLoop1: 1 X-IronPort-AV: E=McAfee;i="6500,9779,10641"; a="800010529" X-IronPort-AV: E=Sophos;i="5.98,238,1673942400"; d="scan'208";a="800010529" Received: from semmer-ubuntu.sh.intel.com ([10.239.159.83]) by orsmga004.jf.intel.com with ESMTP; 06 Mar 2023 06:12:06 -0800 From: Ting Fu To: ffmpeg-devel@ffmpeg.org Date: Mon, 6 Mar 2023 21:55:47 +0800 Message-Id: <20230306135548.23001-2-ting.fu@intel.com> X-Mailer: git-send-email 2.17.1 In-Reply-To: <20230306135548.23001-1-ting.fu@intel.com> References: <20230306135548.23001-1-ting.fu@intel.com> Subject: [FFmpeg-devel] [PATCH V6 2/3] lavfi/dnn: Modified DNN native backend related tools and docs. X-BeenThere: ffmpeg-devel@ffmpeg.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: FFmpeg development discussions and patches List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Reply-To: FFmpeg development discussions and patches MIME-Version: 1.0 Errors-To: ffmpeg-devel-bounces@ffmpeg.org Sender: "ffmpeg-devel" X-TUID: TiqZSfQCBFez Deleted the native backend related files in 'tools' dir. Modify its' docs and codes mentioned in such docs. Signed-off-by: Ting Fu --- doc/filters.texi | 39 +- libavfilter/vf_derain.c | 2 +- libavfilter/vf_dnn_processing.c | 2 +- libavfilter/vf_sr.c | 2 +- tools/python/convert.py | 56 --- tools/python/convert_from_tensorflow.py | 607 ------------------------ tools/python/convert_header.py | 26 - 7 files changed, 7 insertions(+), 727 deletions(-) delete mode 100644 tools/python/convert.py delete mode 100644 tools/python/convert_from_tensorflow.py delete mode 100644 tools/python/convert_header.py diff --git a/doc/filters.texi b/doc/filters.texi index 7a7b2ba4e7..726d2fd7e2 100644 --- a/doc/filters.texi +++ b/doc/filters.texi @@ -11305,9 +11305,6 @@ See @url{http://openaccess.thecvf.com/content_ECCV_2018/papers/Xia_Li_Recurrent_ Training as well as model generation scripts are provided in the repository at @url{https://github.com/XueweiMeng/derain_filter.git}. -Native model files (.model) can be generated from TensorFlow model -files (.pb) by using tools/python/convert.py - The filter accepts the following options: @table @option @@ -11328,21 +11325,16 @@ Specify which DNN backend to use for model loading and execution. This option ac the following values: @table @samp -@item native -Native implementation of DNN loading and execution. - @item tensorflow TensorFlow backend. To enable this backend you need to install the TensorFlow for C library (see @url{https://www.tensorflow.org/install/lang_c}) and configure FFmpeg with @code{--enable-libtensorflow} @end table -Default value is @samp{native}. @item model Set path to model file specifying network architecture and its parameters. -Note that different backends use different file formats. TensorFlow and native -backend can load files for only its format. +Note that different backends use different file formats. TensorFlow can load files for only its format. @end table To get full functionality (such as async execution), please use the @ref{dnn_processing} filter. @@ -11666,9 +11658,6 @@ Specify which DNN backend to use for model loading and execution. This option ac the following values: @table @samp -@item native -Native implementation of DNN loading and execution. - @item tensorflow TensorFlow backend. To enable this backend you need to install the TensorFlow for C library (see @@ -11684,14 +11673,9 @@ be needed if the header files and libraries are not installed into system path) @end table -Default value is @samp{native}. - @item model Set path to model file specifying network architecture and its parameters. -Note that different backends use different file formats. TensorFlow, OpenVINO and native -backend can load files for only its format. - -Native model file (.model) can be generated from TensorFlow model file (.pb) by using tools/python/convert.py +Note that different backends use different file formats. TensorFlow, OpenVINO backend can load files for only its format. @item input Set the input name of the dnn network. @@ -11717,12 +11701,6 @@ Remove rain in rgb24 frame with can.pb (see @ref{derain} filter): ./ffmpeg -i rain.jpg -vf format=rgb24,dnn_processing=dnn_backend=tensorflow:model=can.pb:input=x:output=y derain.jpg @end example -@item -Halve the pixel value of the frame with format gray32f: -@example -ffmpeg -i input.jpg -vf format=grayf32,dnn_processing=model=halve_gray_float.model:input=dnn_in:output=dnn_out:dnn_backend=native -y out.native.png -@end example - @item Handle the Y channel with srcnn.pb (see @ref{sr} filter) for frame with yuv420p (planar YUV formats supported): @example @@ -21750,9 +21728,6 @@ Training scripts as well as scripts for model file (.pb) saving can be found at @url{https://github.com/XueweiMeng/sr/tree/sr_dnn_native}. Original repository is at @url{https://github.com/HighVoltageRocknRoll/sr.git}. -Native model files (.model) can be generated from TensorFlow model -files (.pb) by using tools/python/convert.py - The filter accepts the following options: @table @option @@ -21761,9 +21736,6 @@ Specify which DNN backend to use for model loading and execution. This option ac the following values: @table @samp -@item native -Native implementation of DNN loading and execution. - @item tensorflow TensorFlow backend. To enable this backend you need to install the TensorFlow for C library (see @@ -21771,13 +21743,10 @@ need to install the TensorFlow for C library (see @code{--enable-libtensorflow} @end table -Default value is @samp{native}. - @item model Set path to model file specifying network architecture and its parameters. -Note that different backends use different file formats. TensorFlow backend -can load files for both formats, while native backend can load files for only -its format. +Note that different backends use different file formats. TensorFlow, OpenVINO backend +can load files for only its format. @item scale_factor Set scale factor for SRCNN model. Allowed values are @code{2}, @code{3} and @code{4}. diff --git a/libavfilter/vf_derain.c b/libavfilter/vf_derain.c index 86e9eb8752..7e84cd65a3 100644 --- a/libavfilter/vf_derain.c +++ b/libavfilter/vf_derain.c @@ -43,7 +43,7 @@ static const AVOption derain_options[] = { { "filter_type", "filter type(derain/dehaze)", OFFSET(filter_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "type" }, { "derain", "derain filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "type" }, { "dehaze", "dehaze filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "type" }, - { "dnn_backend", "DNN backend", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, + { "dnn_backend", "DNN backend", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS, "backend" }, { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, #if (CONFIG_LIBTENSORFLOW == 1) { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, diff --git a/libavfilter/vf_dnn_processing.c b/libavfilter/vf_dnn_processing.c index 4462915073..28937346b5 100644 --- a/libavfilter/vf_dnn_processing.c +++ b/libavfilter/vf_dnn_processing.c @@ -45,7 +45,7 @@ typedef struct DnnProcessingContext { #define OFFSET(x) offsetof(DnnProcessingContext, dnnctx.x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM static const AVOption dnn_processing_options[] = { - { "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, FLAGS, "backend" }, + { "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 2 }, INT_MIN, INT_MAX, FLAGS, "backend" }, { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, #if (CONFIG_LIBTENSORFLOW == 1) { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, diff --git a/libavfilter/vf_sr.c b/libavfilter/vf_sr.c index cb24c096ce..e9fe746bae 100644 --- a/libavfilter/vf_sr.c +++ b/libavfilter/vf_sr.c @@ -46,7 +46,7 @@ typedef struct SRContext { #define OFFSET(x) offsetof(SRContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM static const AVOption sr_options[] = { - { "dnn_backend", "DNN backend used for model execution", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS, "backend" }, + { "dnn_backend", "DNN backend used for model execution", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS, "backend" }, { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, #if (CONFIG_LIBTENSORFLOW == 1) { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, diff --git a/tools/python/convert.py b/tools/python/convert.py deleted file mode 100644 index 64cf76b2d8..0000000000 --- a/tools/python/convert.py +++ /dev/null @@ -1,56 +0,0 @@ -# Copyright (c) 2019 Guo Yejun -# -# This file is part of FFmpeg. -# -# FFmpeg is free software; you can redistribute it and/or -# modify it under the terms of the GNU Lesser General Public -# License as published by the Free Software Foundation; either -# version 2.1 of the License, or (at your option) any later version. -# -# FFmpeg is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -# Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public -# License along with FFmpeg; if not, write to the Free Software -# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA -# ============================================================================== - -# verified with Python 3.5.2 on Ubuntu 16.04 -import argparse -import os -from convert_from_tensorflow import * - -def get_arguments(): - parser = argparse.ArgumentParser(description='generate native mode model with weights from deep learning model') - parser.add_argument('--outdir', type=str, default='./', help='where to put generated files') - parser.add_argument('--infmt', type=str, default='tensorflow', help='format of the deep learning model') - parser.add_argument('infile', help='path to the deep learning model with weights') - parser.add_argument('--dump4tb', type=str, default='no', help='dump file for visualization in tensorboard') - - return parser.parse_args() - -def main(): - args = get_arguments() - - if not os.path.isfile(args.infile): - print('the specified input file %s does not exist' % args.infile) - exit(1) - - if not os.path.exists(args.outdir): - print('create output directory %s' % args.outdir) - os.mkdir(args.outdir) - - basefile = os.path.split(args.infile)[1] - basefile = os.path.splitext(basefile)[0] - outfile = os.path.join(args.outdir, basefile) + '.model' - dump4tb = False - if args.dump4tb.lower() in ('yes', 'true', 't', 'y', '1'): - dump4tb = True - - if args.infmt == 'tensorflow': - convert_from_tensorflow(args.infile, outfile, dump4tb) - -if __name__ == '__main__': - main() diff --git a/tools/python/convert_from_tensorflow.py b/tools/python/convert_from_tensorflow.py deleted file mode 100644 index 38e64c1c94..0000000000 --- a/tools/python/convert_from_tensorflow.py +++ /dev/null @@ -1,607 +0,0 @@ -# Copyright (c) 2019 Guo Yejun -# -# This file is part of FFmpeg. -# -# FFmpeg is free software; you can redistribute it and/or -# modify it under the terms of the GNU Lesser General Public -# License as published by the Free Software Foundation; either -# version 2.1 of the License, or (at your option) any later version. -# -# FFmpeg is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -# Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public -# License along with FFmpeg; if not, write to the Free Software -# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA -# ============================================================================== - -import tensorflow as tf -import numpy as np -import sys, struct -import convert_header as header - -__all__ = ['convert_from_tensorflow'] - -class Operand(object): - IOTYPE_INPUT = 1 - IOTYPE_OUTPUT = 2 - IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT - DTYPE_FLOAT = 1 - DTYPE_UINT8 = 4 - index = 0 - def __init__(self, name, dtype, dims): - self.name = name - self.dtype = dtype - self.dims = dims - self.iotype = 0 - self.used_count = 0 - self.index = Operand.index - Operand.index = Operand.index + 1 - self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'} - self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'} - - def add_iotype(self, iotype): - self.iotype = self.iotype | iotype - if iotype == Operand.IOTYPE_INPUT: - self.used_count = self.used_count + 1 - - def __str__(self): - return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index, - self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype], - self.dims, self.used_count) - - def __lt__(self, other): - return self.index < other.index - -class TFConverter: - def __init__(self, graph_def, nodes, outfile, dump4tb): - self.graph_def = graph_def - self.nodes = nodes - self.outfile = outfile - self.dump4tb = dump4tb - self.layer_number = 0 - self.output_names = [] - self.name_node_dict = {} - self.edges = {} - self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4} - self.conv_paddings = {'VALID':0, 'SAME':1} - self.pool_paddings = {'VALID':0, 'SAME':1} - self.converted_nodes = set() - self.conv2d_scope_names = set() - self.conv2d_scopename_inputname_dict = {} - self.dense_scope_names = set() - self.dense_scopename_inputname_dict = {} - self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, - 'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8} - self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5} - self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, - 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, - 'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14, 'Round':15, - 'Exp':16} - self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} - self.name_operand_dict = {} - - - def add_operand(self, name, type): - node = self.name_node_dict[name] - if name not in self.name_operand_dict: - dtype = node.attr['dtype'].type - if dtype == 0: - dtype = node.attr['T'].type - dims = [-1,-1,-1,-1] - if 'shape' in node.attr: - dims[0] = node.attr['shape'].shape.dim[0].size - dims[1] = node.attr['shape'].shape.dim[1].size - dims[2] = node.attr['shape'].shape.dim[2].size - dims[3] = node.attr['shape'].shape.dim[3].size - operand = Operand(name, dtype, dims) - self.name_operand_dict[name] = operand; - self.name_operand_dict[name].add_iotype(type) - return self.name_operand_dict[name].index - - - def dump_for_tensorboard(self): - graph = tf.get_default_graph() - tf.import_graph_def(self.graph_def, name="") - tf.summary.FileWriter('/tmp/graph', graph) - print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it') - - - def get_conv2d_params(self, conv2d_scope_name): - knode = self.name_node_dict[conv2d_scope_name + '/kernel'] - bnode = self.name_node_dict[conv2d_scope_name + '/bias'] - - if conv2d_scope_name + '/dilation_rate' in self.name_node_dict: - dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate'] - else: - dnode = None - - # the BiasAdd name is possible be changed into the output name, - # if activation is None, and BiasAdd.next is the last op which is Identity - if conv2d_scope_name + '/BiasAdd' in self.edges: - anode = self.edges[conv2d_scope_name + '/BiasAdd'][0] - if anode.op not in self.conv_activations: - anode = None - else: - anode = None - return knode, bnode, dnode, anode - - - def get_dense_params(self, dense_scope_name): - knode = self.name_node_dict[dense_scope_name + '/kernel'] - bnode = self.name_node_dict.get(dense_scope_name + '/bias') - # the BiasAdd name is possible be changed into the output name, - # if activation is None, and BiasAdd.next is the last op which is Identity - anode = None - if bnode: - if dense_scope_name + '/BiasAdd' in self.edges: - anode = self.edges[dense_scope_name + '/BiasAdd'][0] - if anode.op not in self.conv_activations: - anode = None - else: - anode = None - return knode, bnode, anode - - - def dump_complex_conv2d_to_file(self, node, f): - assert(node.op == 'Conv2D') - self.layer_number = self.layer_number + 1 - self.converted_nodes.add(node.name) - - scope_name = TFConverter.get_scope_name(node.name) - #knode for kernel, bnode for bias, dnode for dilation, anode for activation - knode, bnode, dnode, anode = self.get_conv2d_params(scope_name) - - if dnode is not None: - dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0] - else: - dilation = 1 - - if anode is not None: - activation = anode.op - else: - activation = 'None' - - padding = node.attr['padding'].s.decode("utf-8") - # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method. - if dilation > 1 and scope_name + '/stack' in self.name_node_dict: - if self.name_node_dict[scope_name + '/stack'].op == "Const": - padding = 'SAME' - padding = self.conv_paddings[padding] - - ktensor = knode.attr['value'].tensor - filter_height = ktensor.tensor_shape.dim[0].size - filter_width = ktensor.tensor_shape.dim[1].size - in_channels = ktensor.tensor_shape.dim[2].size - out_channels = ktensor.tensor_shape.dim[3].size - kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) - kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) - kernel = np.transpose(kernel, [3, 0, 1, 2]) - - has_bias = 1 - np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f) - kernel.tofile(f) - - btensor = bnode.attr['value'].tensor - if btensor.tensor_shape.dim[0].size == 1: - bias = struct.pack("f", btensor.float_val[0]) - else: - bias = btensor.tensor_content - f.write(bias) - - input_name = self.conv2d_scopename_inputname_dict[scope_name] - input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) - - if anode is not None: - output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) - else: - output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) - np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) - - def dump_dense_to_file(self, node, f): - assert(node.op == 'MatMul') - self.layer_number = self.layer_number + 1 - self.converted_nodes.add(node.name) - - scope_name = TFConverter.get_scope_name(node.name) - #knode for kernel, bnode for bias, anode for activation - knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0]) - - if bnode is not None: - has_bias = 1 - btensor = bnode.attr['value'].tensor - if btensor.tensor_shape.dim[0].size == 1: - bias = struct.pack("f", btensor.float_val[0]) - else: - bias = btensor.tensor_content - else: - has_bias = 0 - - if anode is not None: - activation = anode.op - else: - activation = 'None' - - ktensor = knode.attr['value'].tensor - in_channels = ktensor.tensor_shape.dim[0].size - out_channels = ktensor.tensor_shape.dim[1].size - if in_channels * out_channels == 1: - kernel = np.float32(ktensor.float_val[0]) - else: - kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) - kernel = kernel.reshape(in_channels, out_channels) - kernel = np.transpose(kernel, [1, 0]) - - np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f) - kernel.tofile(f) - if has_bias: - f.write(bias) - - input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]] - input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) - - if anode is not None: - output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) - else: - if bnode is not None: - output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) - else: - output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT) - np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) - - - def dump_simple_conv2d_to_file(self, node, f): - assert(node.op == 'Conv2D') - self.layer_number = self.layer_number + 1 - self.converted_nodes.add(node.name) - - node0 = self.name_node_dict[node.input[0]] - node1 = self.name_node_dict[node.input[1]] - if node0.op == 'Const': - knode = node0 - input_name = node.input[1] - else: - knode = node1 - input_name = node.input[0] - - ktensor = knode.attr['value'].tensor - filter_height = ktensor.tensor_shape.dim[0].size - filter_width = ktensor.tensor_shape.dim[1].size - in_channels = ktensor.tensor_shape.dim[2].size - out_channels = ktensor.tensor_shape.dim[3].size - if filter_height * filter_width * in_channels * out_channels == 1: - kernel = np.float32(ktensor.float_val[0]) - else: - kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) - kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) - kernel = np.transpose(kernel, [3, 0, 1, 2]) - - has_bias = 0 - dilation = 1 - padding = node.attr['padding'].s.decode("utf-8") - np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'], - in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f) - kernel.tofile(f) - - input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) - output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) - np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) - - - def dump_depth2space_to_file(self, node, f): - assert(node.op == 'DepthToSpace') - self.layer_number = self.layer_number + 1 - block_size = node.attr['block_size'].i - np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f) - self.converted_nodes.add(node.name) - input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) - output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) - np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) - - - def dump_mirrorpad_to_file(self, node, f): - assert(node.op == 'MirrorPad') - self.layer_number = self.layer_number + 1 - mode = node.attr['mode'].s - mode = self.mirrorpad_mode[mode.decode("utf-8")] - np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f) - pnode = self.name_node_dict[node.input[1]] - self.converted_nodes.add(pnode.name) - paddings = pnode.attr['value'].tensor.tensor_content - f.write(paddings) - self.converted_nodes.add(node.name) - input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) - output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) - np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) - - - def dump_maximum_to_file(self, node, f): - assert(node.op == 'Maximum') - self.layer_number = self.layer_number + 1 - ynode = self.name_node_dict[node.input[1]] - y = ynode.attr['value'].tensor.float_val[0] - np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f) - np.array([y], dtype=np.float32).tofile(f) - self.converted_nodes.add(node.name) - input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) - output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) - np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) - - - def dump_mathbinary_to_file(self, node, f): - self.layer_number = self.layer_number + 1 - self.converted_nodes.add(node.name) - i0_node = self.name_node_dict[node.input[0]] - i1_node = self.name_node_dict[node.input[1]] - np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f) - if i0_node.op == 'Const': - scalar = i0_node.attr['value'].tensor.float_val[0] - np.array([1], dtype=np.uint32).tofile(f) # broadcast: 1 - np.array([scalar], dtype=np.float32).tofile(f) - np.array([0], dtype=np.uint32).tofile(f) # broadcast: 0 - input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) - np.array([input_operand_index], dtype=np.uint32).tofile(f) - elif i1_node.op == 'Const': - scalar = i1_node.attr['value'].tensor.float_val[0] - np.array([0], dtype=np.uint32).tofile(f) - input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) - np.array([input_operand_index], dtype=np.uint32).tofile(f) - np.array([1], dtype=np.uint32).tofile(f) - np.array([scalar], dtype=np.float32).tofile(f) - else: - np.array([0], dtype=np.uint32).tofile(f) - input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) - np.array([input_operand_index], dtype=np.uint32).tofile(f) - np.array([0], dtype=np.uint32).tofile(f) - input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) - np.array([input_operand_index], dtype=np.uint32).tofile(f) - output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) - np.array([output_operand_index], dtype=np.uint32).tofile(f) - - - def dump_mathunary_to_file(self, node, f): - self.layer_number = self.layer_number + 1 - self.converted_nodes.add(node.name) - i0_node = self.name_node_dict[node.input[0]] - np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f) - input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) - np.array([input_operand_index], dtype=np.uint32).tofile(f) - output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) - np.array([output_operand_index],dtype=np.uint32).tofile(f) - - - def dump_avg_pool_to_file(self, node, f): - assert(node.op == 'AvgPool') - self.layer_number = self.layer_number + 1 - self.converted_nodes.add(node.name) - node0 = self.name_node_dict[node.input[0]] - strides = node.attr['strides'] - - # Tensorflow do not support pooling strides in batch dimension and - # current native NN do not support pooling strides in channel dimension, added assert() here. - assert(strides.list.i[1]==strides.list.i[2]) - assert(strides.list.i[0]==1) - assert(strides.list.i[3]==1) - strides = strides.list.i[1] - filter_node = node.attr['ksize'] - input_name = node.input[0] - - # Tensorflow do not support pooling ksize in batch dimension and channel dimension. - assert(filter_node.list.i[0]==1) - assert(filter_node.list.i[3]==1) - filter_height = filter_node.list.i[1] - filter_width = filter_node.list.i[2] - - padding = node.attr['padding'].s.decode("utf-8") - np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height], - dtype=np.uint32).tofile(f) - - input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) - output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) - np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f) - - - def dump_layers_to_file(self, f): - for node in self.nodes: - if node.name in self.converted_nodes: - continue - - # conv2d with dilation generates very complex nodes, so handle it in special - if self.in_conv2d_scope(node.name): - if node.op == 'Conv2D': - self.dump_complex_conv2d_to_file(node, f) - continue - if self.in_dense_scope(node.name): - if node.op == 'MatMul': - self.dump_dense_to_file(node, f) - continue - - - if node.op == 'Conv2D': - self.dump_simple_conv2d_to_file(node, f) - continue - if node.name in self.output_names: - input_name = self.id_different_scope_dict[node.name] - if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name): - continue - if node.op == 'AvgPool': - self.dump_avg_pool_to_file(node, f) - elif node.op == 'DepthToSpace': - self.dump_depth2space_to_file(node, f) - elif node.op == 'MirrorPad': - self.dump_mirrorpad_to_file(node, f) - elif node.op == 'Maximum': - self.dump_maximum_to_file(node, f) - elif node.op in self.mathbin2code: - self.dump_mathbinary_to_file(node, f) - elif node.op in self.mathun2code: - self.dump_mathunary_to_file(node, f) - - - def dump_operands_to_file(self, f): - operands = sorted(self.name_operand_dict.values()) - for operand in operands: - #print('{}'.format(operand)) - np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f) - f.write(operand.name.encode('utf-8')) - np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f) - np.array(operand.dims, dtype=np.uint32).tofile(f) - - - def dump_to_file(self): - with open(self.outfile, 'wb') as f: - f.write(header.str.encode('utf-8')) - np.array([header.major, header.minor], dtype=np.uint32).tofile(f) - self.dump_layers_to_file(f) - self.dump_operands_to_file(f) - np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f) - - - def generate_name_node_dict(self): - for node in self.nodes: - self.name_node_dict[node.name] = node - - - def generate_output_names(self): - used_names = [] - for node in self.nodes: - for input in node.input: - used_names.append(input) - - for node in self.nodes: - if node.name not in used_names: - self.output_names.append(node.name) - - - def remove_identity(self): - self.id_different_scope_dict = {} - id_nodes = [] - id_dict = {} - for node in self.nodes: - if node.op == 'Identity': - name = node.name - input = node.input[0] - id_nodes.append(node) - # do not change the output name - if name in self.output_names: - self.name_node_dict[input].name = name - self.name_node_dict[name] = self.name_node_dict[input] - del self.name_node_dict[input] - self.id_different_scope_dict[name] = input - else: - id_dict[name] = input - - for idnode in id_nodes: - self.nodes.remove(idnode) - - for node in self.nodes: - for i in range(len(node.input)): - input = node.input[i] - if input in id_dict: - node.input[i] = id_dict[input] - - - def generate_edges(self): - for node in self.nodes: - for input in node.input: - if input in self.edges: - self.edges[input].append(node) - else: - self.edges[input] = [node] - - - @staticmethod - def get_scope_name(name): - index = name.rfind('/') - if index == -1: - return "" - return name[0:index] - - - def in_conv2d_scope(self, name): - inner_scope = TFConverter.get_scope_name(name) - if inner_scope == "": - return False; - for scope in self.conv2d_scope_names: - index = inner_scope.find(scope) - if index == 0: - return True - return False - - - def in_dense_scope(self, name): - inner_scope = TFConverter.get_scope_name(name) - if inner_scope == "": - return False; - for scope in self.dense_scope_names: - index = inner_scope.find(scope) - if index == 0: - return True - return False - - def generate_sub_block_op_scope_info(self): - # mostly, conv2d/dense is a sub block in graph, get the scope name - for node in self.nodes: - if node.op == 'Conv2D': - scope = TFConverter.get_scope_name(node.name) - # for the case tf.nn.conv2d is called directly - if scope == '': - continue - # for the case tf.nn.conv2d is called within a scope - if scope + '/kernel' not in self.name_node_dict: - continue - self.conv2d_scope_names.add(scope) - elif node.op == 'MatMul': - scope = TFConverter.get_scope_name(node.name) - # for the case tf.nn.dense is called directly - if scope == '': - continue - # for the case tf.nn.dense is called within a scope - if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict: - continue - self.dense_scope_names.add(scope.split('/Tensordot')[0]) - - # get the input name to the conv2d/dense sub block - for node in self.nodes: - scope = TFConverter.get_scope_name(node.name) - if scope in self.conv2d_scope_names: - if node.op == 'Conv2D' or node.op == 'Shape': - for inp in node.input: - if TFConverter.get_scope_name(inp) != scope: - self.conv2d_scopename_inputname_dict[scope] = inp - elif scope in self.dense_scope_names: - if node.op == 'MatMul' or node.op == 'Shape': - for inp in node.input: - if TFConverter.get_scope_name(inp) != scope: - self.dense_scopename_inputname_dict[scope] = inp - elif scope.split('/Tensordot')[0] in self.dense_scope_names: - if node.op == 'Transpose': - for inp in node.input: - if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0: - self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp - - - def run(self): - self.generate_name_node_dict() - self.generate_output_names() - self.remove_identity() - self.generate_edges() - self.generate_sub_block_op_scope_info() - - if self.dump4tb: - self.dump_for_tensorboard() - - self.dump_to_file() - - -def convert_from_tensorflow(infile, outfile, dump4tb): - with open(infile, 'rb') as f: - # read the file in .proto format - graph_def = tf.GraphDef() - graph_def.ParseFromString(f.read()) - nodes = graph_def.node - - converter = TFConverter(graph_def, nodes, outfile, dump4tb) - converter.run() diff --git a/tools/python/convert_header.py b/tools/python/convert_header.py deleted file mode 100644 index 143f92c42e..0000000000 --- a/tools/python/convert_header.py +++ /dev/null @@ -1,26 +0,0 @@ -# Copyright (c) 2019 -# -# This file is part of FFmpeg. -# -# FFmpeg is free software; you can redistribute it and/or -# modify it under the terms of the GNU Lesser General Public -# License as published by the Free Software Foundation; either -# version 2.1 of the License, or (at your option) any later version. -# -# FFmpeg is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -# Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public -# License along with FFmpeg; if not, write to the Free Software -# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA -# ============================================================================== - -str = 'FFMPEGDNNNATIVE' - -# increase major and reset minor when we have to re-convert the model file -major = 1 - -# increase minor when we don't have to re-convert the model file -minor = 23 From patchwork Mon Mar 6 13:55:48 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Ting Fu X-Patchwork-Id: 40602 Delivered-To: ffmpegpatchwork2@gmail.com Received: by 2002:a05:6a20:d046:b0:cd:afd7:272c with SMTP id hv6csp2923687pzb; Mon, 6 Mar 2023 06:12:45 -0800 (PST) X-Google-Smtp-Source: AK7set8KiWPaN0Rr2mVn5/sUpKmRbWDdlmMH+7cn9LDWTc+iEBW22OGRsG1WxZis44DEzWqPp0jC X-Received: by 2002:a17:906:fcb2:b0:8aa:c105:f0bf with SMTP id qw18-20020a170906fcb200b008aac105f0bfmr12193281ejb.17.1678111965119; Mon, 06 Mar 2023 06:12:45 -0800 (PST) ARC-Seal: i=1; a=rsa-sha256; t=1678111965; cv=none; d=google.com; s=arc-20160816; b=DfXGjZcyh36OMzObX6Yid3pTQRx+PI3C//mh7B9RHPFXI5Ht64shHlsZeVlaKTn2Q4 4pbzLjl2bTTHjrHDLGx1gRnZW1JMAM89EfD1SVhVOodhADPDqT1pqLMZC530MHSDcWTh 9tmIeU4x10Md7C5l3EDEzFLV0Cp7zmoduPcnixRAgahg2z9gU/kpoZd9wAh2PJMcZMzw Uk1UPI5i85eL93oo9Htp5zOodGVFN+EOT59ckpxjQi/yHfIDgmhj3bQz20dYgGGjiZZi xqYoe1T9OHnNOVfGMfSL+UhLpJl96Xglhr14A1laSsiTZbJXIlMuVnin3nxj3pvoX9e2 VBoQ== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=sender:errors-to:content-transfer-encoding:mime-version:reply-to :list-subscribe:list-help:list-post:list-archive:list-unsubscribe :list-id:precedence:subject:references:in-reply-to:message-id:date :to:from:dkim-signature:delivered-to; bh=Ru1Oc7+hDwYYt3YsMR60ihZFu3u0Zy/EgIQ2Ab+uELo=; b=S9+fDCXvQy1W9WtEPqefD4bXhaxF0ajlezf25MqDX0YP46G3NMKw26wV+ndcXS7zld FD1dQU38PL70kpVeQSRhlt4ST1xVSv7fKlAqshlPqnDEiQOZnuJIBy8NFWYQQrOq2ZQd b6zy0zckSzmOssUCBn3+Sk8RoV/X3S+c/4ybnfC7atkj9DRpSH4hrb0MXNaaII/6ZQyp ZWqiCnpSFjJn5Gmmj0m3Cq/RQhmacfavjhm1B0W6Lc7v6oEj/EL2GBuNoITt0aN3Vc9j Kftq17LChpBCBTaz5CqAfS3xSxmN2p8S8LkLeXNt0+ivWvbRzvvxnLNiaoobM0zj2Os1 9p0w== ARC-Authentication-Results: i=1; mx.google.com; dkim=neutral (body hash did not verify) header.i=@intel.com header.s=Intel header.b=THaEwAIl; spf=pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) smtp.mailfrom=ffmpeg-devel-bounces@ffmpeg.org Return-Path: Received: from ffbox0-bg.mplayerhq.hu (ffbox0-bg.ffmpeg.org. [79.124.17.100]) by mx.google.com with ESMTP id t2-20020a170906268200b008cc657e52afsi6668714ejc.604.2023.03.06.06.12.44; Mon, 06 Mar 2023 06:12:45 -0800 (PST) Received-SPF: pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) client-ip=79.124.17.100; Authentication-Results: mx.google.com; dkim=neutral (body hash did not verify) header.i=@intel.com header.s=Intel header.b=THaEwAIl; spf=pass (google.com: domain of ffmpeg-devel-bounces@ffmpeg.org designates 79.124.17.100 as permitted sender) smtp.mailfrom=ffmpeg-devel-bounces@ffmpeg.org Received: from [127.0.1.1] (localhost [127.0.0.1]) by ffbox0-bg.mplayerhq.hu (Postfix) with ESMTP id 3EC4268B6D3; Mon, 6 Mar 2023 16:12:23 +0200 (EET) X-Original-To: ffmpeg-devel@ffmpeg.org Delivered-To: ffmpeg-devel@ffmpeg.org Received: from mga18.intel.com (mga18.intel.com [134.134.136.126]) by ffbox0-bg.mplayerhq.hu (Postfix) with ESMTPS id 5CBD368BB5A for ; Mon, 6 Mar 2023 16:12:15 +0200 (EET) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=intel.com; i=@intel.com; q=dns/txt; s=Intel; t=1678111940; x=1709647940; h=from:to:subject:date:message-id:in-reply-to:references; bh=bS9xPAos32aR8/yAuUbywEhVoOqLoLV3rr2JM2270As=; b=THaEwAIlImEetyqHDWWKdUrMgJLdg1wIvAKsHRzX399tqCqXTuPz+FYK NMC4R8dJIFxB95cEFGUzpQBsqpOp+NGDCJRxmT5WFSlULNGTX6CKSS2s9 8cpBVpR1Qi0Int18rHeQaLuZn1W4D3OjhL52b5EY7NdRMENoTsRGU9yV/ F2bE8yHUvjWq/VmUPvSsSyeExLkWNmZ2PBiyoWCsluRCbe/PYrF7jP0UH 2ZTLO0ipD//uHImHy5fSFTp5SxmjtwmK8LRl6xAkcV8mreRysAtpCjJe/ TKkRcCrVp1S79J1lwHEF3Uw3MG7rEeegf7XXBjS2mNNiUFlPgCY5dG7BL Q==; X-IronPort-AV: E=McAfee;i="6500,9779,10641"; a="319390226" X-IronPort-AV: E=Sophos;i="5.98,238,1673942400"; d="scan'208";a="319390226" Received: from orsmga004.jf.intel.com ([10.7.209.38]) by orsmga106.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 06 Mar 2023 06:12:10 -0800 X-ExtLoop1: 1 X-IronPort-AV: E=McAfee;i="6500,9779,10641"; a="800010536" X-IronPort-AV: E=Sophos;i="5.98,238,1673942400"; d="scan'208";a="800010536" Received: from semmer-ubuntu.sh.intel.com ([10.239.159.83]) by orsmga004.jf.intel.com with ESMTP; 06 Mar 2023 06:12:07 -0800 From: Ting Fu To: ffmpeg-devel@ffmpeg.org Date: Mon, 6 Mar 2023 21:55:48 +0800 Message-Id: <20230306135548.23001-3-ting.fu@intel.com> X-Mailer: git-send-email 2.17.1 In-Reply-To: <20230306135548.23001-1-ting.fu@intel.com> References: <20230306135548.23001-1-ting.fu@intel.com> Subject: [FFmpeg-devel] [PATCH V6 3/3] lavfi/dnn: Remove DNN native backend X-BeenThere: ffmpeg-devel@ffmpeg.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: FFmpeg development discussions and patches List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Reply-To: FFmpeg development discussions and patches MIME-Version: 1.0 Errors-To: ffmpeg-devel-bounces@ffmpeg.org Sender: "ffmpeg-devel" X-TUID: vBHdvTacGfSR According to discussion in https://etherpad.mit.edu/p/FF_dev_meeting_20221202 and the proposal in http://ffmpeg.org/pipermail/ffmpeg-devel/2022-December/304534.html, the DNN native backend should be removed at first step. All the DNN native backend related codes are deleted. Signed-off-by: Ting Fu --- libavfilter/Makefile | 3 - libavfilter/dnn/Makefile | 10 - libavfilter/dnn/dnn_backend_native.c | 561 ------------------ libavfilter/dnn/dnn_backend_native.h | 149 ----- .../dnn/dnn_backend_native_layer_avgpool.c | 147 ----- .../dnn/dnn_backend_native_layer_avgpool.h | 69 --- .../dnn/dnn_backend_native_layer_conv2d.c | 265 --------- .../dnn/dnn_backend_native_layer_conv2d.h | 68 --- .../dnn/dnn_backend_native_layer_dense.c | 151 ----- .../dnn/dnn_backend_native_layer_dense.h | 65 -- .../dnn_backend_native_layer_depth2space.c | 102 ---- .../dnn_backend_native_layer_depth2space.h | 72 --- .../dnn/dnn_backend_native_layer_mathbinary.c | 193 ------ .../dnn/dnn_backend_native_layer_mathbinary.h | 54 -- .../dnn/dnn_backend_native_layer_mathunary.c | 156 ----- .../dnn/dnn_backend_native_layer_mathunary.h | 92 --- .../dnn/dnn_backend_native_layer_maximum.c | 83 --- .../dnn/dnn_backend_native_layer_maximum.h | 44 -- .../dnn/dnn_backend_native_layer_pad.c | 268 --------- .../dnn/dnn_backend_native_layer_pad.h | 43 -- libavfilter/dnn/dnn_backend_native_layers.c | 42 -- libavfilter/dnn/dnn_backend_native_layers.h | 38 -- libavfilter/dnn/dnn_backend_tf.c | 368 +----------- libavfilter/dnn_interface.h | 2 +- libavfilter/tests/dnn-layer-avgpool.c | 197 ------ libavfilter/tests/dnn-layer-conv2d.c | 248 -------- libavfilter/tests/dnn-layer-dense.c | 131 ---- libavfilter/tests/dnn-layer-depth2space.c | 102 ---- libavfilter/tests/dnn-layer-mathbinary.c | 214 ------- libavfilter/tests/dnn-layer-mathunary.c | 148 ----- libavfilter/tests/dnn-layer-maximum.c | 71 --- libavfilter/tests/dnn-layer-pad.c | 239 -------- libavfilter/vf_derain.c | 1 - libavfilter/vf_dnn_processing.c | 1 - libavfilter/vf_sr.c | 1 - tests/Makefile | 1 - tests/fate/dnn.mak | 45 -- 37 files changed, 4 insertions(+), 4440 deletions(-) delete mode 100644 libavfilter/dnn/dnn_backend_native.c delete mode 100644 libavfilter/dnn/dnn_backend_native.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_avgpool.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_avgpool.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_conv2d.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_conv2d.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_dense.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_dense.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_depth2space.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_depth2space.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_mathbinary.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_mathbinary.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_mathunary.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_mathunary.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_maximum.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_maximum.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_pad.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_pad.h delete mode 100644 libavfilter/dnn/dnn_backend_native_layers.c delete mode 100644 libavfilter/dnn/dnn_backend_native_layers.h delete mode 100644 libavfilter/tests/dnn-layer-avgpool.c delete mode 100644 libavfilter/tests/dnn-layer-conv2d.c delete mode 100644 libavfilter/tests/dnn-layer-dense.c delete mode 100644 libavfilter/tests/dnn-layer-depth2space.c delete mode 100644 libavfilter/tests/dnn-layer-mathbinary.c delete mode 100644 libavfilter/tests/dnn-layer-mathunary.c delete mode 100644 libavfilter/tests/dnn-layer-maximum.c delete mode 100644 libavfilter/tests/dnn-layer-pad.c delete mode 100644 tests/fate/dnn.mak diff --git a/libavfilter/Makefile b/libavfilter/Makefile index b3d3d981dd..03ba249d35 100644 --- a/libavfilter/Makefile +++ b/libavfilter/Makefile @@ -634,9 +634,6 @@ SKIPHEADERS-$(CONFIG_VULKAN) += vulkan.h vulkan_filter.h TOOLS = graph2dot TESTPROGS = drawutils filtfmts formats integral -TESTPROGS-$(CONFIG_DNN) += dnn-layer-avgpool dnn-layer-conv2d dnn-layer-dense \ - dnn-layer-depth2space dnn-layer-mathbinary \ - dnn-layer-mathunary dnn-layer-maximum dnn-layer-pad \ TOOLS-$(CONFIG_LIBZMQ) += zmqsend diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile index 4cfbce0efc..5d5697ea42 100644 --- a/libavfilter/dnn/Makefile +++ b/libavfilter/dnn/Makefile @@ -3,16 +3,6 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_io_proc.o OBJS-$(CONFIG_DNN) += dnn/queue.o OBJS-$(CONFIG_DNN) += dnn/safe_queue.o OBJS-$(CONFIG_DNN) += dnn/dnn_backend_common.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_dense.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathbinary.o -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathunary.o DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o diff --git a/libavfilter/dnn/dnn_backend_native.c b/libavfilter/dnn/dnn_backend_native.c deleted file mode 100644 index b53799f04d..0000000000 --- a/libavfilter/dnn/dnn_backend_native.c +++ /dev/null @@ -1,561 +0,0 @@ -/* - * Copyright (c) 2018 Sergey Lavrushkin - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN native backend implementation. - */ - -#include "dnn_backend_native.h" -#include "libavutil/avassert.h" -#include "dnn_backend_native_layer_conv2d.h" -#include "dnn_backend_native_layers.h" -#include "dnn_io_proc.h" -#include "dnn_backend_common.h" - -#define OFFSET(x) offsetof(NativeContext, x) -#define FLAGS AV_OPT_FLAG_FILTERING_PARAM -static const AVOption dnn_native_options[] = { - { "conv2d_threads", "threads num for conv2d layer", OFFSET(options.conv2d_threads), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, FLAGS }, - { "async", "use DNN async inference", OFFSET(options.async), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, - { NULL }, -}; - -static const AVClass dnn_native_class = { - .class_name = "dnn_native", - .item_name = av_default_item_name, - .option = dnn_native_options, - .version = LIBAVUTIL_VERSION_INT, - .category = AV_CLASS_CATEGORY_FILTER, -}; - -static int execute_model_native(Queue *lltask_queue); - -static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue) -{ - NativeModel *native_model = task->model; - NativeContext *ctx = &native_model->ctx; - LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask)); - - if (!lltask) { - av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n"); - return AVERROR(ENOMEM); - } - task->inference_todo = 1; - task->inference_done = 0; - lltask->task = task; - - if (ff_queue_push_back(lltask_queue, lltask) < 0) { - av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n"); - av_freep(&lltask); - return AVERROR(ENOMEM); - } - return 0; -} - -static int get_input_native(void *model, DNNData *input, const char *input_name) -{ - NativeModel *native_model = model; - NativeContext *ctx = &native_model->ctx; - - for (int i = 0; i < native_model->operands_num; ++i) { - DnnOperand *oprd = &native_model->operands[i]; - if (strcmp(oprd->name, input_name) == 0) { - if (oprd->type != DOT_INPUT) { - av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name); - return AVERROR(EINVAL); - } - input->dt = oprd->data_type; - av_assert0(oprd->dims[0] == 1); - input->height = oprd->dims[1]; - input->width = oprd->dims[2]; - input->channels = oprd->dims[3]; - return 0; - } - } - - // do not find the input operand - av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); - return AVERROR(EINVAL); -} - -static int get_output_native(void *model, const char *input_name, int input_width, int input_height, - const char *output_name, int *output_width, int *output_height) -{ - int ret = 0; - NativeModel *native_model = model; - NativeContext *ctx = &native_model->ctx; - TaskItem task; - DNNExecBaseParams exec_params = { - .input_name = input_name, - .output_names = &output_name, - .nb_output = 1, - .in_frame = NULL, - .out_frame = NULL, - }; - - ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, native_model, input_height, input_width, ctx); - if (ret != 0) { - goto err; - } - - ret = extract_lltask_from_task(&task, native_model->lltask_queue); - if (ret != 0) { - av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); - goto err; - } - - ret = execute_model_native(native_model->lltask_queue); - *output_width = task.out_frame->width; - *output_height = task.out_frame->height; - -err: - av_frame_free(&task.out_frame); - av_frame_free(&task.in_frame); - return ret; -} - -// Loads model and its parameters that are stored in a binary file with following structure: -// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters... -// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases -// For DEPTH_TO_SPACE layer: block_size -DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx) -{ -#define DNN_NATIVE_MAGIC "FFMPEGDNNNATIVE" - DNNModel *model = NULL; - // sizeof - 1 to skip the terminating '\0' which is not written in the file - char buf[sizeof(DNN_NATIVE_MAGIC) - 1]; - int version, header_size, major_version_expected = 1; - NativeModel *native_model = NULL; - AVIOContext *model_file_context; - int file_size, dnn_size, parsed_size; - int32_t layer; - DNNLayerType layer_type; - - if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ - return NULL; - } - file_size = avio_size(model_file_context); - - model = av_mallocz(sizeof(DNNModel)); - if (!model){ - goto fail; - } - - /** - * check file header with string and version - */ - if (avio_read(model_file_context, buf, sizeof(buf)) != sizeof(buf) || - memcmp(buf, DNN_NATIVE_MAGIC, sizeof(buf))) - goto fail; - dnn_size = sizeof(buf); - - version = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - if (version != major_version_expected) { - goto fail; - } - - // currently no need to check minor version - version = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - header_size = dnn_size; - - native_model = av_mallocz(sizeof(NativeModel)); - if (!native_model){ - goto fail; - } - model->model = native_model; - - native_model->ctx.class = &dnn_native_class; - model->options = options; - if (av_opt_set_from_string(&native_model->ctx, model->options, NULL, "=", "&") < 0) - goto fail; - native_model->model = model; - - if (native_model->ctx.options.async) { - av_log(&native_model->ctx, AV_LOG_WARNING, "Async not supported. Rolling back to sync\n"); - native_model->ctx.options.async = 0; - } - -#if !HAVE_PTHREAD_CANCEL - if (native_model->ctx.options.conv2d_threads > 1){ - av_log(&native_model->ctx, AV_LOG_WARNING, "'conv2d_threads' option was set but it is not supported " - "on this build (pthread support is required)\n"); - } -#endif - - avio_seek(model_file_context, file_size - 8, SEEK_SET); - native_model->layers_num = (int32_t)avio_rl32(model_file_context); - native_model->operands_num = (int32_t)avio_rl32(model_file_context); - dnn_size += 8; - avio_seek(model_file_context, header_size, SEEK_SET); - - native_model->layers = av_mallocz(native_model->layers_num * sizeof(Layer)); - if (!native_model->layers){ - goto fail; - } - - native_model->operands = av_mallocz(native_model->operands_num * sizeof(DnnOperand)); - if (!native_model->operands){ - goto fail; - } - - native_model->task_queue = ff_queue_create(); - if (!native_model->task_queue) { - goto fail; - } - - native_model->lltask_queue = ff_queue_create(); - if (!native_model->lltask_queue) { - goto fail; - } - - for (layer = 0; layer < native_model->layers_num; ++layer){ - layer_type = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - - if (layer_type >= DLT_COUNT) { - goto fail; - } - - native_model->layers[layer].type = layer_type; - parsed_size = ff_layer_funcs[layer_type].pf_load(&native_model->layers[layer], model_file_context, file_size, native_model->operands_num); - if (!parsed_size) { - goto fail; - } - dnn_size += parsed_size; - } - - for (int32_t i = 0; i < native_model->operands_num; ++i){ - DnnOperand *oprd; - int32_t name_len; - int32_t operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - - if (operand_index >= native_model->operands_num) { - goto fail; - } - - oprd = &native_model->operands[operand_index]; - name_len = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - - avio_get_str(model_file_context, name_len, oprd->name, sizeof(oprd->name)); - dnn_size += name_len; - - oprd->type = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - - oprd->data_type = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - - for (int32_t dim = 0; dim < 4; ++dim) { - oprd->dims[dim] = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - } - if (oprd->type == DOT_INPUT && oprd->dims[0] != 1) - goto fail; - - oprd->isNHWC = 1; - } - - avio_closep(&model_file_context); - - if (dnn_size != file_size){ - ff_dnn_free_model_native(&model); - return NULL; - } - - model->get_input = &get_input_native; - model->get_output = &get_output_native; - model->filter_ctx = filter_ctx; - model->func_type = func_type; - - return model; - -fail: - ff_dnn_free_model_native(&model); - avio_closep(&model_file_context); - return NULL; -} - -static int execute_model_native(Queue *lltask_queue) -{ - NativeModel *native_model = NULL; - NativeContext *ctx = NULL; - int32_t layer; - DNNData input, output; - DnnOperand *oprd = NULL; - LastLevelTaskItem *lltask = NULL; - TaskItem *task = NULL; - int ret = 0; - - lltask = ff_queue_pop_front(lltask_queue); - if (!lltask) { - av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n"); - ret = AVERROR(EINVAL); - goto err; - } - task = lltask->task; - native_model = task->model; - ctx = &native_model->ctx; - - if (native_model->layers_num <= 0 || native_model->operands_num <= 0) { - av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n"); - ret = AVERROR(EINVAL); - goto err; - } - - for (int i = 0; i < native_model->operands_num; ++i) { - oprd = &native_model->operands[i]; - if (strcmp(oprd->name, task->input_name) == 0) { - if (oprd->type != DOT_INPUT) { - av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", task->input_name); - ret = AVERROR(EINVAL); - goto err; - } - break; - } - oprd = NULL; - } - if (!oprd) { - av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name); - ret = AVERROR(EINVAL); - goto err; - } - - oprd->dims[1] = task->in_frame->height; - oprd->dims[2] = task->in_frame->width; - - av_freep(&oprd->data); - oprd->length = ff_calculate_operand_data_length(oprd); - if (oprd->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n"); - ret = AVERROR(EINVAL); - goto err; - } - oprd->data = av_malloc(oprd->length); - if (!oprd->data) { - av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n"); - ret = AVERROR(ENOMEM); - goto err; - } - - input.height = oprd->dims[1]; - input.width = oprd->dims[2]; - input.channels = oprd->dims[3]; - input.data = oprd->data; - input.dt = oprd->data_type; - if (task->do_ioproc) { - if (native_model->model->frame_pre_proc != NULL) { - native_model->model->frame_pre_proc(task->in_frame, &input, native_model->model->filter_ctx); - } else { - ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); - } - } - - if (task->nb_output != 1) { - // currently, the filter does not need multiple outputs, - // so we just pending the support until we really need it. - avpriv_report_missing_feature(ctx, "multiple outputs"); - ret = AVERROR(ENOSYS); - goto err; - } - - for (layer = 0; layer < native_model->layers_num; ++layer){ - DNNLayerType layer_type = native_model->layers[layer].type; - ret = ff_layer_funcs[layer_type].pf_exec(native_model->operands, - native_model->layers[layer].input_operand_indexes, - native_model->layers[layer].output_operand_index, - native_model->layers[layer].params, - &native_model->ctx); - if (ret != 0) { - av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n"); - goto err; - } - } - - for (uint32_t i = 0; i < task->nb_output; ++i) { - DnnOperand *oprd = NULL; - const char *output_name = task->output_names[i]; - for (int j = 0; j < native_model->operands_num; ++j) { - if (strcmp(native_model->operands[j].name, output_name) == 0) { - oprd = &native_model->operands[j]; - break; - } - } - - if (oprd == NULL) { - av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n"); - ret = AVERROR(EINVAL); - goto err; - } - - output.data = oprd->data; - output.height = oprd->dims[1]; - output.width = oprd->dims[2]; - output.channels = oprd->dims[3]; - output.dt = oprd->data_type; - - if (task->do_ioproc) { - if (native_model->model->frame_post_proc != NULL) { - native_model->model->frame_post_proc(task->out_frame, &output, native_model->model->filter_ctx); - } else { - ff_proc_from_dnn_to_frame(task->out_frame, &output, ctx); - } - } else { - task->out_frame->width = output.width; - task->out_frame->height = output.height; - } - } - task->inference_done++; -err: - av_freep(&lltask); - return ret; -} - -int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params) -{ - NativeModel *native_model = model->model; - NativeContext *ctx = &native_model->ctx; - TaskItem *task; - int ret = 0; - - ret = ff_check_exec_params(ctx, DNN_NATIVE, model->func_type, exec_params); - if (ret != 0) { - return ret; - } - - task = av_malloc(sizeof(*task)); - if (!task) { - av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n"); - return AVERROR(ENOMEM); - } - - ret = ff_dnn_fill_task(task, exec_params, native_model, ctx->options.async, 1); - if (ret != 0) { - av_freep(&task); - return ret; - } - - if (ff_queue_push_back(native_model->task_queue, task) < 0) { - av_freep(&task); - av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n"); - return AVERROR(ENOMEM); - } - - ret = extract_lltask_from_task(task, native_model->lltask_queue); - if (ret != 0) { - av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); - return ret; - } - - return execute_model_native(native_model->lltask_queue); -} - -int ff_dnn_flush_native(const DNNModel *model) -{ - NativeModel *native_model = model->model; - - if (ff_queue_size(native_model->lltask_queue) == 0) { - // no pending task need to flush - return 0; - } - - // for now, use sync node with flush operation - // Switch to async when it is supported - return execute_model_native(native_model->lltask_queue); -} - -DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out) -{ - NativeModel *native_model = model->model; - return ff_dnn_get_result_common(native_model->task_queue, in, out); -} - -int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd) -{ - int32_t result = 1; - for (int i = 0; i < 4; ++i) - result *= oprd->dims[i]; - - return result; -} - -int32_t ff_calculate_operand_data_length(const DnnOperand* oprd) -{ - // currently, we just support DNN_FLOAT - uint64_t len = sizeof(float); - for (int i = 0; i < 4; i++) { - len *= oprd->dims[i]; - if (len > INT32_MAX) - return 0; - } - return len; -} - -void ff_dnn_free_model_native(DNNModel **model) -{ - NativeModel *native_model; - ConvolutionalParams *conv_params; - int32_t layer; - - if (*model) - { - if ((*model)->model) { - native_model = (*model)->model; - if (native_model->layers) { - for (layer = 0; layer < native_model->layers_num; ++layer){ - if (native_model->layers[layer].type == DLT_CONV2D){ - conv_params = (ConvolutionalParams *)native_model->layers[layer].params; - av_freep(&conv_params->kernel); - av_freep(&conv_params->biases); - } - av_freep(&native_model->layers[layer].params); - } - av_freep(&native_model->layers); - } - - if (native_model->operands) { - for (uint32_t operand = 0; operand < native_model->operands_num; ++operand) - av_freep(&native_model->operands[operand].data); - av_freep(&native_model->operands); - } - - while (ff_queue_size(native_model->lltask_queue) != 0) { - LastLevelTaskItem *item = ff_queue_pop_front(native_model->lltask_queue); - av_freep(&item); - } - ff_queue_destroy(native_model->lltask_queue); - - while (ff_queue_size(native_model->task_queue) != 0) { - TaskItem *item = ff_queue_pop_front(native_model->task_queue); - av_frame_free(&item->in_frame); - av_frame_free(&item->out_frame); - av_freep(&item); - } - ff_queue_destroy(native_model->task_queue); - - av_freep(&native_model); - } - av_freep(model); - } -} diff --git a/libavfilter/dnn/dnn_backend_native.h b/libavfilter/dnn/dnn_backend_native.h deleted file mode 100644 index 75bd9a44f7..0000000000 --- a/libavfilter/dnn/dnn_backend_native.h +++ /dev/null @@ -1,149 +0,0 @@ -/* - * Copyright (c) 2018 Sergey Lavrushkin - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN inference functions interface for native backend. - */ - - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_H - -#include "../dnn_interface.h" -#include "libavformat/avio.h" -#include "libavutil/opt.h" -#include "queue.h" - -/** - * the enum value of DNNLayerType should not be changed, - * the same values are used in convert_from_tensorflow.py - * and, it is used to index the layer execution/load function pointer. - */ -typedef enum { - DLT_INPUT = 0, - DLT_CONV2D = 1, - DLT_DEPTH_TO_SPACE = 2, - DLT_MIRROR_PAD = 3, - DLT_MAXIMUM = 4, - DLT_MATH_BINARY = 5, - DLT_MATH_UNARY = 6, - DLT_AVG_POOL = 7, - DLT_DENSE = 8, - DLT_COUNT -} DNNLayerType; - -typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType; -typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingParam; -typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; - -typedef struct Layer{ - DNNLayerType type; - /** - * a layer can have multiple inputs and one output. - * 4 is just a big enough number for input operands (increase it if necessary), - * do not use 'int32_t *input_operand_indexes', so we don't worry about mem leaks. - */ - int32_t input_operand_indexes[4]; - int32_t output_operand_index; - void *params; -} Layer; - -typedef struct DnnOperand{ - /** - * there are two memory layouts, NHWC or NCHW, so we use dims, - * dims[0] is Number. - */ - int32_t dims[4]; - - /** - * input/output/intermediate operand of the network - */ - DNNOperandType type; - - /** - * support different kinds of data type such as float, half float, int8 etc, - * first support float now. - */ - DNNDataType data_type; - - /** - * NHWC if 1, otherwise NCHW. - * let's first support NHWC only, this flag is for extensive usage. - */ - int8_t isNHWC; - - /** - * to avoid possible memory leak, do not use char *name - */ - char name[128]; - - /** - * data pointer with data length in bytes. - * usedNumbersLeft is only valid for intermediate operand, - * it means how many layers still depend on this operand, - * todo: the memory can be reused when usedNumbersLeft is zero. - */ - void *data; - int32_t length; - int32_t usedNumbersLeft; -}DnnOperand; - -typedef struct InputParams{ - int height, width, channels; -} InputParams; - -typedef struct NativeOptions{ - uint8_t async; - uint32_t conv2d_threads; -} NativeOptions; - -typedef struct NativeContext { - const AVClass *class; - NativeOptions options; -} NativeContext; - -// Represents simple feed-forward convolutional network. -typedef struct NativeModel{ - NativeContext ctx; - DNNModel *model; - Layer *layers; - int32_t layers_num; - DnnOperand *operands; - int32_t operands_num; - Queue *task_queue; - Queue *lltask_queue; -} NativeModel; - -DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx); - -int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params); - -DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out); - -int ff_dnn_flush_native(const DNNModel *model); - -void ff_dnn_free_model_native(DNNModel **model); - -// NOTE: User must check for error (return value <= 0) to handle -// case like integer overflow. -int32_t ff_calculate_operand_data_length(const DnnOperand *oprd); -int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd); -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layer_avgpool.c b/libavfilter/dnn/dnn_backend_native_layer_avgpool.c deleted file mode 100644 index d6fcac8a35..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_avgpool.c +++ /dev/null @@ -1,147 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN native backend implementation. - */ - -#include "libavutil/avassert.h" -#include "dnn_backend_native_layer_avgpool.h" - -int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) -{ - AvgPoolParams *avgpool_params; - int dnn_size = 0; - avgpool_params = av_malloc(sizeof(*avgpool_params)); - if(!avgpool_params) - return 0; - - avgpool_params->strides = (int32_t)avio_rl32(model_file_context); - avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context); - avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context); - dnn_size += 12; - - if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){ - av_freep(&avgpool_params); - return 0; - } - - layer->params = avgpool_params; - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 8; - - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { - return 0; - } - return dnn_size; -} - -int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx) -{ - float *output; - int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area; - int32_t input_operand_index = input_operand_indexes[0]; - int number = operands[input_operand_index].dims[0]; - int height = operands[input_operand_index].dims[1]; - int width = operands[input_operand_index].dims[2]; - int channel = operands[input_operand_index].dims[3]; - const float *input = operands[input_operand_index].data; - const AvgPoolParams *avgpool_params = parameters; - - int kernel_strides = avgpool_params->strides; - int src_linesize = width * channel; - DnnOperand *output_operand = &operands[output_operand_index]; - - /** - * When padding_method = SAME, the tensorflow will only padding the hald number of 0 pixels - * except the remainders. - * Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2 - * and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image, - * and 5 - 2 - 1 = 2 lines after the last line of input image. - * and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image, - * and 7 - 2 - 2 = 3 lines after the last line of input image. - */ - if (avgpool_params->padding_method == SAME) { - height_end = height; - width_end = width; - height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1); - width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1); - height_radius = height_radius < 0 ? 0 : height_radius >> 1; - width_radius = width_radius < 0 ? 0 : width_radius >> 1; - output_height = ceil(height / (kernel_strides * 1.0)); - output_width = ceil(width / (kernel_strides * 1.0)); - } else { - av_assert0(avgpool_params->padding_method == VALID); - height_end = height - avgpool_params->kernel_size + 1; - width_end = width - avgpool_params->kernel_size + 1; - height_radius = 0; - width_radius = 0; - output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); - output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); - } - - output_operand->dims[0] = number; - output_operand->dims[1] = output_height; - output_operand->dims[2] = output_width; - // not support pooling in channel dimension now - output_operand->dims[3] = channel; - output_operand->data_type = operands[input_operand_index].data_type; - output_operand->length = ff_calculate_operand_data_length(output_operand); - if (output_operand->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); - return AVERROR(EINVAL); - } - output_operand->data = av_realloc(output_operand->data, output_operand->length); - if (!output_operand->data) { - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); - return AVERROR(ENOMEM); - } - output = output_operand->data; - - for (int y = 0; y < height_end; y += kernel_strides) { - for (int x = 0; x < width_end; x += kernel_strides) { - for (int n_channel = 0; n_channel < channel; ++n_channel) { - output[n_channel] = 0.0; - kernel_area = 0; - for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) { - for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) { - float input_pel; - int y_pos = y + (kernel_y - height_radius); - int x_pos = x + (kernel_x - width_radius); - if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) { - input_pel = 0.0; - } else { - kernel_area++; - input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel]; - } - output[n_channel] += input_pel; - } - } - output[n_channel] /= kernel_area; - } - output += channel; - } - } - - return 0; -} diff --git a/libavfilter/dnn/dnn_backend_native_layer_avgpool.h b/libavfilter/dnn/dnn_backend_native_layer_avgpool.h deleted file mode 100644 index 118a160090..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_avgpool.h +++ /dev/null @@ -1,69 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN inference functions interface for native backend. - */ - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H - -#include "dnn_backend_native.h" - -typedef struct AvgPoolParams{ - int32_t strides, kernel_size; - DNNPaddingParam padding_method; -} AvgPoolParams; - -/** - * @brief Load Average Pooling Layer. - * - * It assigns the Average Pooling layer with AvgPoolParams - * after parsing from the model file context. - * - * @param layer pointer to the DNN layer instance - * @param model_file_context pointer to model file context - * @param file_size model file size to check if data is read - * correctly from the model file - * @param operands_num operand count of the whole model to - * check if data is read correctly from the model file - * @return number of bytes read from the model file - * @retval 0 if out of memory or an error occurs - */ -int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); - -/** - * @brief Execute the Average Pooling Layer. - * Padding in channel dimensions is currently not supported. - * - * @param operands all operands for the model - * @param input_operand_indexes input operand indexes for this layer - * @param output_operand_index output operand index for this layer - * @param parameters average pooling parameters - * @param ctx pointer to Native model context for logging - * @retval 0 if the execution succeeds - * @retval AVERROR(ENOMEM) if memory allocation fails - * @retval AVERROR(EINVAL) for invalid arguments - */ -int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); - -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c b/libavfilter/dnn/dnn_backend_native_layer_conv2d.c deleted file mode 100644 index 2ac37d8855..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c +++ /dev/null @@ -1,265 +0,0 @@ -/* - * Copyright (c) 2018 Sergey Lavrushkin - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include "libavutil/avassert.h" -#include "libavutil/thread.h" -#include "libavutil/cpu.h" -#include "dnn_backend_native_layer_conv2d.h" - -#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) - -//struct to pass parameters -typedef struct ThreadCommonParam{ - DnnOperand *operands; - const int32_t *input_operand_indexes; - int32_t output_operand_index; - const void *parameters; - NativeContext *ctx; - float *output_data; -} ThreadCommonParam; - -typedef struct ThreadParam{ - ThreadCommonParam *thread_common_param; - int thread_start, thread_end; -#if HAVE_PTHREAD_CANCEL - pthread_t thread; -#endif -} ThreadParam; - -int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) -{ - ConvolutionalParams *conv_params; - int kernel_size; - int dnn_size = 0; - conv_params = av_malloc(sizeof(*conv_params)); - if (!conv_params) - return 0; - - conv_params->dilation = (int32_t)avio_rl32(model_file_context); - conv_params->padding_method = (int32_t)avio_rl32(model_file_context); - conv_params->activation = (int32_t)avio_rl32(model_file_context); - conv_params->input_num = (int32_t)avio_rl32(model_file_context); - conv_params->output_num = (int32_t)avio_rl32(model_file_context); - conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); - conv_params->has_bias = (int32_t)avio_rl32(model_file_context); - dnn_size += 28; - - kernel_size = conv_params->input_num * conv_params->output_num * - conv_params->kernel_size * conv_params->kernel_size; - dnn_size += kernel_size * 4; - if (conv_params->has_bias) - dnn_size += conv_params->output_num * 4; - - if (dnn_size > file_size || conv_params->input_num <= 0 || - conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ - av_freep(&conv_params); - return 0; - } - - conv_params->kernel = av_malloc_array(kernel_size, sizeof(*conv_params->kernel)); - if (!conv_params->kernel) { - av_freep(&conv_params); - return 0; - } - for (int i = 0; i < kernel_size; ++i) { - conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); - } - - conv_params->biases = NULL; - if (conv_params->has_bias) { - conv_params->biases = av_malloc_array(conv_params->output_num, sizeof(*conv_params->biases)); - if (!conv_params->biases){ - av_freep(&conv_params->kernel); - av_freep(&conv_params); - return 0; - } - for (int i = 0; i < conv_params->output_num; ++i){ - conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); - } - } - - layer->params = conv_params; - - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 8; - - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { - return 0; - } - - return dnn_size; -} - -static void * dnn_execute_layer_conv2d_thread(void *threadarg) -{ - //pass parameters - ThreadParam *thread_param = threadarg; - ThreadCommonParam *thread_common_param = thread_param->thread_common_param; - DnnOperand *operands = thread_common_param->operands; - int32_t input_operand_index = thread_common_param->input_operand_indexes[0]; - int height = operands[input_operand_index].dims[1]; - int width = operands[input_operand_index].dims[2]; - int channel = operands[input_operand_index].dims[3]; - const float *input = operands[input_operand_index].data; - const ConvolutionalParams *conv_params = thread_common_param->parameters; - - int radius = conv_params->kernel_size >> 1; - int src_linesize = width * conv_params->input_num; - int filter_linesize = conv_params->kernel_size * conv_params->input_num; - int filter_size = conv_params->kernel_size * filter_linesize; - int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; - - float *output = thread_common_param->output_data; - output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size); - - av_assert0(channel == conv_params->input_num); - - for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) { - for (int x = pad_size; x < width - pad_size; ++x) { - for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) { - if (conv_params->has_bias) - output[n_filter] = conv_params->biases[n_filter]; - else - output[n_filter] = 0.f; - - for (int ch = 0; ch < conv_params->input_num; ++ch) { - for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) { - for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) { - float input_pel; - if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) { - int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height); - int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width); - input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; - } else { - int y_pos = y + (kernel_y - radius) * conv_params->dilation; - int x_pos = x + (kernel_x - radius) * conv_params->dilation; - input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 : - input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; - } - - - output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + - kernel_x * conv_params->input_num + ch]; - } - } - } - switch (conv_params->activation){ - case RELU: - output[n_filter] = FFMAX(output[n_filter], 0.0); - break; - case TANH: - output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; - break; - case SIGMOID: - output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); - break; - case NONE: - break; - case LEAKY_RELU: - output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); - } - } - output += conv_params->output_num; - } - } - return NULL; -} - - -int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx) -{ -#if HAVE_PTHREAD_CANCEL - int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count()) - ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads); - int ret = 0, thread_stride; - ThreadParam *thread_param; -#else - ThreadParam thread_param = { 0 }; -#endif - ThreadCommonParam thread_common_param; - const ConvolutionalParams *conv_params = parameters; - int height = operands[input_operand_indexes[0]].dims[1]; - int width = operands[input_operand_indexes[0]].dims[2]; - int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; - DnnOperand *output_operand = &operands[output_operand_index]; - void *tmp; - - output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0]; - output_operand->dims[1] = height - pad_size * 2; - output_operand->dims[2] = width - pad_size * 2; - output_operand->dims[3] = conv_params->output_num; - output_operand->data_type = operands[input_operand_indexes[0]].data_type; - output_operand->length = ff_calculate_operand_data_length(output_operand); - if (output_operand->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); - return AVERROR(EINVAL); - } - tmp = av_realloc(output_operand->data, output_operand->length); - if (!tmp) { - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); - return AVERROR(ENOMEM); - } - output_operand->data = tmp; - thread_common_param.output_data = output_operand->data; - thread_common_param.operands = operands; - thread_common_param.input_operand_indexes = input_operand_indexes; - thread_common_param.output_operand_index = output_operand_index; - thread_common_param.parameters = parameters; - thread_common_param.ctx = ctx; - -#if HAVE_PTHREAD_CANCEL - thread_param = av_malloc_array(thread_num, sizeof(*thread_param)); - if (!thread_param) - return AVERROR(ENOMEM); - thread_stride = (height - pad_size * 2) / thread_num; - //create threads - for (int i = 0; i < thread_num; i++){ - int thread_ret = 0; - thread_param[i].thread_common_param = &thread_common_param; - thread_param[i].thread_start = thread_stride * i + pad_size; - thread_param[i].thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i].thread_start + thread_stride); - thread_ret = pthread_create(&thread_param[i].thread, NULL, - dnn_execute_layer_conv2d_thread, &thread_param[i]); - if (thread_ret) { - thread_num = i; - ret = AVERROR(thread_ret); - break; - } - } - - for (int i = 0; i < thread_num; i++){ - pthread_join(thread_param[i].thread, NULL); - } - - //release memory - av_freep(&thread_param); - - return ret; -#else - thread_param.thread_common_param = &thread_common_param; - thread_param.thread_start = pad_size; - thread_param.thread_end = height - pad_size; - dnn_execute_layer_conv2d_thread(&thread_param); - - return 0; -#endif -} diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.h b/libavfilter/dnn/dnn_backend_native_layer_conv2d.h deleted file mode 100644 index f754a9ba18..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.h +++ /dev/null @@ -1,68 +0,0 @@ -/* - * Copyright (c) 2018 Sergey Lavrushkin - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H - -#include "dnn_backend_native.h" - - -typedef struct ConvolutionalParams{ - int32_t input_num, output_num, kernel_size; - DNNActivationFunc activation; - DNNPaddingParam padding_method; - int32_t dilation; - int32_t has_bias; - float *kernel; - float *biases; -} ConvolutionalParams; - -/** - * @brief Load the 2D Convolution Layer. - * - * It assigns the 2D convolution layer with ConvolutionalParams - * after parsing from the model file context. - * - * @param layer pointer to the DNN layer instance - * @param model_file_context pointer to model file context - * @param file_size model file size to check if data is read - * correctly from the model file - * @param operands_num operand count of the whole model to - * check if data is read correctly from the model file - * @return number of bytes read from the model file - * @retval 0 if out of memory or an error occurs - */ -int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); - -/** - * @brief Execute the 2D Convolution Layer. - * - * @param operands all operands for the model - * @param input_operand_indexes input operand indexes for this layer - * @param output_operand_index output operand index for this layer - * @param parameters convolution parameters - * @param ctx pointer to Native model context for logging - * @retval 0 if the execution succeeds - * @retval AVERROR(ENOMEM) if memory allocation fails - * @retval AVERROR(EINVAL) for invalid arguments - */ -int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.c b/libavfilter/dnn/dnn_backend_native_layer_dense.c deleted file mode 100644 index dff342c1f3..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_dense.c +++ /dev/null @@ -1,151 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include "libavutil/avassert.h" -#include "dnn_backend_native_layer_dense.h" - -int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) -{ - DenseParams *dense_params; - int kernel_size; - int dnn_size = 0; - dense_params = av_malloc(sizeof(*dense_params)); - if (!dense_params) - return 0; - - dense_params->activation = (int32_t)avio_rl32(model_file_context); - dense_params->input_num = (int32_t)avio_rl32(model_file_context); - dense_params->output_num = (int32_t)avio_rl32(model_file_context); - dense_params->has_bias = (int32_t)avio_rl32(model_file_context); - dnn_size += 16; - - kernel_size = dense_params->input_num * dense_params->output_num; - dnn_size += kernel_size * 4; - if (dense_params->has_bias) - dnn_size += dense_params->output_num * 4; - - if (dnn_size > file_size || dense_params->input_num <= 0 || - dense_params->output_num <= 0){ - av_freep(&dense_params); - return 0; - } - - dense_params->kernel = av_malloc(kernel_size * sizeof(float)); - if (!dense_params->kernel) { - av_freep(&dense_params); - return 0; - } - for (int i = 0; i < kernel_size; ++i) { - dense_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); - } - - dense_params->biases = NULL; - if (dense_params->has_bias) { - dense_params->biases = av_malloc(dense_params->output_num * sizeof(float)); - if (!dense_params->biases){ - av_freep(&dense_params->kernel); - av_freep(&dense_params); - return 0; - } - for (int i = 0; i < dense_params->output_num; ++i){ - dense_params->biases[i] = av_int2float(avio_rl32(model_file_context)); - } - } - - layer->params = dense_params; - - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 8; - - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { - return 0; - } - - return dnn_size; -} - -int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx) -{ - float *output; - int32_t input_operand_index = input_operand_indexes[0]; - int number = operands[input_operand_index].dims[0]; - int height = operands[input_operand_index].dims[1]; - int width = operands[input_operand_index].dims[2]; - int channel = operands[input_operand_index].dims[3]; - const float *input = operands[input_operand_index].data; - const DenseParams *dense_params = parameters; - - int src_linesize = width * channel; - DnnOperand *output_operand = &operands[output_operand_index]; - output_operand->dims[0] = number; - output_operand->dims[1] = height; - output_operand->dims[2] = width; - output_operand->dims[3] = dense_params->output_num; - output_operand->data_type = operands[input_operand_index].data_type; - output_operand->length = ff_calculate_operand_data_length(output_operand); - if (output_operand->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); - return AVERROR(EINVAL); - } - output_operand->data = av_realloc(output_operand->data, output_operand->length); - if (!output_operand->data) { - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); - return AVERROR(ENOMEM); - } - output = output_operand->data; - - av_assert0(channel == dense_params->input_num); - - for (int y = 0; y < height; ++y) { - for (int x = 0; x < width; ++x) { - for (int n_filter = 0; n_filter < dense_params->output_num; ++n_filter) { - if (dense_params->has_bias) - output[n_filter] = dense_params->biases[n_filter]; - else - output[n_filter] = 0.f; - - for (int ch = 0; ch < dense_params->input_num; ++ch) { - float input_pel; - input_pel = input[y * src_linesize + x * dense_params->input_num + ch]; - output[n_filter] += input_pel * dense_params->kernel[n_filter*dense_params->input_num + ch]; - } - switch (dense_params->activation){ - case RELU: - output[n_filter] = FFMAX(output[n_filter], 0.0); - break; - case TANH: - output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; - break; - case SIGMOID: - output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); - break; - case NONE: - break; - case LEAKY_RELU: - output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); - } - } - output += dense_params->output_num; - } - } - return 0; -} diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.h b/libavfilter/dnn/dnn_backend_native_layer_dense.h deleted file mode 100644 index 607fc3e684..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_dense.h +++ /dev/null @@ -1,65 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H - -#include "dnn_backend_native.h" - -typedef struct DenseParams{ - int32_t input_num, output_num; - DNNActivationFunc activation; - int32_t has_bias; - float *kernel; - float *biases; -} DenseParams; - -/** - * @brief Load the Densely-Connected Layer. - * - * It assigns the densely connected layer with DenseParams - * after parsing from the model file context. - * - * @param layer pointer to the DNN layer instance - * @param model_file_context pointer to model file context - * @param file_size model file size to check if data is read - * correctly from the model file - * @param operands_num operand count of the whole model to - * check if data is read correctly from the model file - * @return number of bytes read from the model file - * @retval 0 if out of memory or an error occurs - */ -int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); - -/** - * @brief Execute the Densely-Connected Layer. - * - * @param operands all operands for the model - * @param input_operand_indexes input operand indexes for this layer - * @param output_operand_index output operand index for this layer - * @param parameters dense layer parameters - * @param ctx pointer to Native model context for logging - * @retval 0 if the execution succeeds - * @retval AVERROR(ENOMEM) if memory allocation fails - * @retval AVERROR(EINVAL) for invalid arguments - */ -int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layer_depth2space.c b/libavfilter/dnn/dnn_backend_native_layer_depth2space.c deleted file mode 100644 index 358ac3bcaa..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_depth2space.c +++ /dev/null @@ -1,102 +0,0 @@ -/* - * Copyright (c) 2018 Sergey Lavrushkin - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN native backend implementation. - */ - -#include "dnn_backend_native.h" -#include "dnn_backend_native_layer_depth2space.h" - -int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) -{ - DepthToSpaceParams *params; - int dnn_size = 0; - params = av_malloc(sizeof(*params)); - if (!params) - return 0; - - params->block_size = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 8; - layer->params = params; - - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { - return 0; - } - - return dnn_size; -} - -int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx) -{ - float *output; - const DepthToSpaceParams *params = parameters; - int block_size = params->block_size; - int32_t input_operand_index = input_operand_indexes[0]; - int number = operands[input_operand_index].dims[0]; - int height = operands[input_operand_index].dims[1]; - int width = operands[input_operand_index].dims[2]; - int channels = operands[input_operand_index].dims[3]; - const float *input = operands[input_operand_index].data; - - int y, x, by, bx, ch; - int new_channels = channels / (block_size * block_size); - int output_linesize = width * channels; - int by_linesize = output_linesize / block_size; - int x_linesize = new_channels * block_size; - - DnnOperand *output_operand = &operands[output_operand_index]; - output_operand->dims[0] = number; - output_operand->dims[1] = height * block_size; - output_operand->dims[2] = width * block_size; - output_operand->dims[3] = new_channels; - output_operand->data_type = operands[input_operand_index].data_type; - output_operand->length = ff_calculate_operand_data_length(output_operand); - if (output_operand->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); - return AVERROR(EINVAL); - } - output_operand->data = av_realloc(output_operand->data, output_operand->length); - if (!output_operand->data) { - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); - return AVERROR(ENOMEM); - } - output = output_operand->data; - - for (y = 0; y < height; ++y){ - for (x = 0; x < width; ++x){ - for (by = 0; by < block_size; ++by){ - for (bx = 0; bx < block_size; ++bx){ - for (ch = 0; ch < new_channels; ++ch){ - output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch]; - } - input += new_channels; - } - } - } - output += output_linesize; - } - return 0; -} diff --git a/libavfilter/dnn/dnn_backend_native_layer_depth2space.h b/libavfilter/dnn/dnn_backend_native_layer_depth2space.h deleted file mode 100644 index aaf2df4c13..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_depth2space.h +++ /dev/null @@ -1,72 +0,0 @@ -/* - * Copyright (c) 2018 Sergey Lavrushkin - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN inference functions interface for native backend. - */ - - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H - -#include "../dnn_interface.h" -#include "libavformat/avio.h" - -typedef struct DepthToSpaceParams{ - int block_size; -} DepthToSpaceParams; - -/** - * @brief Load the Depth to Space Layer. - * - * It assigns the depth to space layer with DepthToSpaceParams - * after parsing from the model file context. - * - * @param layer pointer to the DNN layer instance - * @param model_file_context pointer to model file context - * @param file_size model file size to check if data is read - * correctly from the model file - * @param operands_num operand count of the whole model to - * check if data is read correctly from the model file - * @return number of bytes read from the model file - * @retval 0 if an error occurs or out of memory - */ -int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); - -/** - * @brief Execute the Depth to Space Layer. - * - * It rearranges the input data from depth into spatial - * form by applying Depth to Space transformation. - * - * @param operands all operands for the model - * @param input_operand_indexes input operand indexes for this layer - * @param output_operand_index output operand index for this layer - * @param parameters depth to space layer parameters - * @param ctx pointer to Native model context for logging - * @retval 0 if the execution succeeds - * @retval AVERROR(ENOMEM) if memory allocation fails - * @retval AVERROR(EINVAL) for invalid arguments - */ -int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); - -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c deleted file mode 100644 index 1a3fa3f132..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c +++ /dev/null @@ -1,193 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN native backend implementation. - */ - -#include "dnn_backend_native.h" -#include "dnn_backend_native_layer_mathbinary.h" - -typedef float (*FunType)(float src0, float src1); - -static float sub(float src0, float src1) -{ - return src0 - src1; -} -static float add(float src0, float src1) -{ - return src0 + src1; -} -static float mul(float src0, float src1) -{ - return src0 * src1; -} -static float realdiv(float src0, float src1) -{ - return src0 / src1; -} -static float minimum(float src0, float src1) -{ - return FFMIN(src0, src1); -} -static float floormod(float src0, float src1) -{ - return (float)((int)(src0) % (int)(src1)); -} - -static void math_binary_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes) -{ - int dims_count; - const float *src; - float *dst; - dims_count = ff_calculate_operand_dims_count(output); - src = input->data; - dst = output->data; - if (params->input0_broadcast || params->input1_broadcast) { - for (int i = 0; i < dims_count; ++i) { - dst[i] = pfun(params->v, src[i]); - } - } else { - const DnnOperand *input1 = &operands[input_operand_indexes[1]]; - const float *src1 = input1->data; - for (int i = 0; i < dims_count; ++i) { - dst[i] = pfun(src[i], src1[i]); - } - } -} -static void math_binary_not_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes) -{ - int dims_count; - const float *src; - float *dst; - dims_count = ff_calculate_operand_dims_count(output); - src = input->data; - dst = output->data; - if (params->input0_broadcast) { - for (int i = 0; i < dims_count; ++i) { - dst[i] = pfun(params->v, src[i]); - } - } else if (params->input1_broadcast) { - for (int i = 0; i < dims_count; ++i) { - dst[i] = pfun(src[i], params->v); - } - } else { - const DnnOperand *input1 = &operands[input_operand_indexes[1]]; - const float *src1 = input1->data; - for (int i = 0; i < dims_count; ++i) { - dst[i] = pfun(src[i], src1[i]); - } - } -} -int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) -{ - DnnLayerMathBinaryParams params = { 0 }; - int dnn_size = 0; - int input_index = 0; - - params.bin_op = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - - params.input0_broadcast = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - if (params.input0_broadcast) { - params.v = av_int2float(avio_rl32(model_file_context)); - } else { - layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context); - if (layer->input_operand_indexes[input_index] >= operands_num) { - return 0; - } - input_index++; - } - dnn_size += 4; - - params.input1_broadcast = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - if (params.input1_broadcast) { - params.v = av_int2float(avio_rl32(model_file_context)); - } else { - layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context); - if (layer->input_operand_indexes[input_index] >= operands_num) { - return 0; - } - input_index++; - } - dnn_size += 4; - - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - - if (layer->output_operand_index >= operands_num) { - return 0; - } - layer->params = av_memdup(¶ms, sizeof(params)); - if (!layer->params) - return 0; - - return dnn_size; -} - -int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx) -{ - const DnnOperand *input = &operands[input_operand_indexes[0]]; - DnnOperand *output = &operands[output_operand_index]; - const DnnLayerMathBinaryParams *params = parameters; - - for (int i = 0; i < 4; ++i) - output->dims[i] = input->dims[i]; - - output->data_type = input->data_type; - output->length = ff_calculate_operand_data_length(output); - if (output->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); - return AVERROR(EINVAL); - } - output->data = av_realloc(output->data, output->length); - if (!output->data) { - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); - return AVERROR(ENOMEM); - } - - switch (params->bin_op) { - case DMBO_SUB: - math_binary_not_commutative(sub, params, input, output, operands, input_operand_indexes); - return 0; - case DMBO_ADD: - math_binary_commutative(add, params, input, output, operands, input_operand_indexes); - return 0; - case DMBO_MUL: - math_binary_commutative(mul, params, input, output, operands, input_operand_indexes); - return 0; - case DMBO_REALDIV: - math_binary_not_commutative(realdiv, params, input, output, operands, input_operand_indexes); - return 0; - case DMBO_MINIMUM: - math_binary_commutative(minimum, params, input, output, operands, input_operand_indexes); - return 0; - case DMBO_FLOORMOD: - math_binary_not_commutative(floormod, params, input, output, operands, input_operand_indexes); - return 0; - default: - av_log(ctx, AV_LOG_ERROR, "Unmatch math binary operator\n"); - return AVERROR(EINVAL); - } -} diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h deleted file mode 100644 index eee294b00f..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h +++ /dev/null @@ -1,54 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN inference functions interface for native backend. - */ - - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H - -#include "libavformat/avio.h" -#include "dnn_backend_native.h" - -typedef enum { - DMBO_SUB = 0, - DMBO_ADD = 1, - DMBO_MUL = 2, - DMBO_REALDIV = 3, - DMBO_MINIMUM = 4, - DMBO_FLOORMOD = 5, - DMBO_COUNT -} DNNMathBinaryOperation; - -typedef struct DnnLayerMathBinaryParams{ - DNNMathBinaryOperation bin_op; - int input0_broadcast; - int input1_broadcast; - float v; -} DnnLayerMathBinaryParams; - -int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); -int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); - -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathunary.c b/libavfilter/dnn/dnn_backend_native_layer_mathunary.c deleted file mode 100644 index e3c5106e5e..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_mathunary.c +++ /dev/null @@ -1,156 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN native backend implementation. - */ - -#include - -#include "dnn_backend_native.h" -#include "dnn_backend_native_layer_mathunary.h" - -int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) -{ - DnnLayerMathUnaryParams *params; - int dnn_size = 0; - params = av_malloc(sizeof(*params)); - if(!params) - return 0; - - params->un_op = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - layer->params = params; - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 8; - - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { - return 0; - } - - return dnn_size; - -} - -int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx) -{ - const DnnOperand *input = &operands[input_operand_indexes[0]]; - DnnOperand *output = &operands[output_operand_index]; - const DnnLayerMathUnaryParams *params = parameters; - int dims_count; - const float *src; - float *dst; - - for (int i = 0; i < 4; ++i) - output->dims[i] = input->dims[i]; - - output->data_type = input->data_type; - output->length = ff_calculate_operand_data_length(output); - if (output->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); - return AVERROR(EINVAL); - } - output->data = av_realloc(output->data, output->length); - if (!output->data) { - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); - return AVERROR(ENOMEM); - } - - dims_count = ff_calculate_operand_dims_count(output); - src = input->data; - dst = output->data; - - switch (params->un_op) { - case DMUO_ABS: - for (int i = 0; i < dims_count; ++i) - dst[i] = FFABS(src[i]); - return 0; - case DMUO_SIN: - for (int i = 0; i < dims_count; ++i) - dst[i] = sin(src[i]); - return 0; - case DMUO_COS: - for (int i = 0; i < dims_count; ++i) - dst[i] = cos(src[i]); - return 0; - case DMUO_TAN: - for (int i = 0; i < dims_count; ++i) - dst[i] = tan(src[i]); - return 0; - case DMUO_ASIN: - for (int i = 0; i < dims_count; ++i) - dst[i] = asin(src[i]); - return 0; - case DMUO_ACOS: - for (int i = 0; i < dims_count; ++i) - dst[i] = acos(src[i]); - return 0; - case DMUO_ATAN: - for (int i = 0; i < dims_count; ++i) - dst[i] = atan(src[i]); - return 0; - case DMUO_SINH: - for (int i = 0; i < dims_count; ++i) - dst[i] = sinh(src[i]); - return 0; - case DMUO_COSH: - for (int i = 0; i < dims_count; ++i) - dst[i] = cosh(src[i]); - return 0; - case DMUO_TANH: - for (int i = 0; i < dims_count; ++i) - dst[i] = tanh(src[i]); - return 0; - case DMUO_ASINH: - for (int i = 0; i < dims_count; ++i) - dst[i] = asinh(src[i]); - return 0; - case DMUO_ACOSH: - for (int i = 0; i < dims_count; ++i) - dst[i] = acosh(src[i]); - return 0; - case DMUO_ATANH: - for (int i = 0; i < dims_count; ++i) - dst[i] = atanh(src[i]); - return 0; - case DMUO_CEIL: - for (int i = 0; i < dims_count; ++i) - dst[i] = ceil(src[i]); - return 0; - case DMUO_FLOOR: - for (int i = 0; i < dims_count; ++i) - dst[i] = floor(src[i]); - return 0; - case DMUO_ROUND: - for (int i = 0; i < dims_count; ++i) - dst[i] = round(src[i]); - return 0; - case DMUO_EXP: - for (int i = 0; i < dims_count; ++i) - dst[i] = exp(src[i]); - return 0; - default: - av_log(ctx, AV_LOG_ERROR, "Unmatch math unary operator\n"); - return AVERROR(EINVAL); - } -} diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathunary.h b/libavfilter/dnn/dnn_backend_native_layer_mathunary.h deleted file mode 100644 index 806e73b29f..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_mathunary.h +++ /dev/null @@ -1,92 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN inference functions interface for native backend. - */ - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H - -#include "libavformat/avio.h" -#include "dnn_backend_native.h" - -typedef enum { - DMUO_ABS = 0, - DMUO_SIN = 1, - DMUO_COS = 2, - DMUO_TAN = 3, - DMUO_ASIN = 4, - DMUO_ACOS = 5, - DMUO_ATAN = 6, - DMUO_SINH = 7, - DMUO_COSH = 8, - DMUO_TANH = 9, - DMUO_ASINH = 10, - DMUO_ACOSH = 11, - DMUO_ATANH = 12, - DMUO_CEIL = 13, - DMUO_FLOOR = 14, - DMUO_ROUND = 15, - DMUO_EXP = 16, - DMUO_COUNT -} DNNMathUnaryOperation; - -typedef struct DnnLayerMathUnaryParams{ - DNNMathUnaryOperation un_op; -} DnnLayerMathUnaryParams; - -/** - * @brief Load the Unary Math Layer. - * - * It assigns the unary math layer with DnnLayerMathUnaryParams - * after parsing from the model file context. - * - * @param layer pointer to the DNN layer instance - * @param model_file_context pointer to model file context - * @param file_size model file size to check if data is read - * correctly from the model file - * @param operands_num operand count of the whole model to - * check if data is read correctly from the model file - * @return number of bytes read from the model file - * @retval 0 if out of memory or an error occurs - */ -int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); - -/** - * @brief Execute the Unary Math Layer. - * - * It applies the unary operator parsed while - * loading to the given input operands. - * - * @param operands all operands for the model - * @param input_operand_indexes input operand indexes for this layer - * @param output_operand_index output operand index for this layer - * @param parameters unary math layer parameters - * @param ctx pointer to Native model context for logging - * @retval 0 if the execution succeeds - * @retval AVERROR(ENOMEM) if memory allocation fails - * @retval AVERROR(EINVAL) for invalid arguments - */ -int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); - -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layer_maximum.c b/libavfilter/dnn/dnn_backend_native_layer_maximum.c deleted file mode 100644 index 667efaa3b8..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_maximum.c +++ /dev/null @@ -1,83 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN native backend implementation. - */ - -#include "dnn_backend_native.h" -#include "dnn_backend_native_layer_maximum.h" - -int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) -{ - DnnLayerMaximumParams *params; - int dnn_size = 0; - params = av_malloc(sizeof(*params)); - if (!params) - return 0; - - params->val.u32 = avio_rl32(model_file_context); - dnn_size += 4; - layer->params = params; - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 8; - - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { - return 0; - } - - return dnn_size; -} - -int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx) -{ - const DnnOperand *input = &operands[input_operand_indexes[0]]; - DnnOperand *output = &operands[output_operand_index]; - const DnnLayerMaximumParams *params = parameters; - int dims_count; - const float *src; - float *dst; - - for (int i = 0; i < 4; ++i) - output->dims[i] = input->dims[i]; - - output->data_type = input->data_type; - output->length = ff_calculate_operand_data_length(output); - if (output->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); - return AVERROR(EINVAL); - } - output->data = av_realloc(output->data, output->length); - if (!output->data) { - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); - return AVERROR(ENOMEM); - } - - dims_count = ff_calculate_operand_dims_count(output); - src = input->data; - dst = output->data; - for (int i = 0; i < dims_count; ++i) - dst[i] = FFMAX(src[i], params->val.y); - - return 0; -} diff --git a/libavfilter/dnn/dnn_backend_native_layer_maximum.h b/libavfilter/dnn/dnn_backend_native_layer_maximum.h deleted file mode 100644 index 523acbe05f..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_maximum.h +++ /dev/null @@ -1,44 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * DNN inference functions interface for native backend. - */ - - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H - -#include "libavformat/avio.h" -#include "dnn_backend_native.h" - -typedef struct DnnLayerMaximumParams{ - union { - uint32_t u32; - float y; - }val; -} DnnLayerMaximumParams; - -int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); -int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); - -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layer_pad.c b/libavfilter/dnn/dnn_backend_native_layer_pad.c deleted file mode 100644 index e274fe12c6..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_pad.c +++ /dev/null @@ -1,268 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include "libavutil/avassert.h" -#include "dnn_backend_native_layer_pad.h" - -int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) -{ - LayerPadParams *params; - int dnn_size = 0; - params = av_malloc(sizeof(*params)); - if (!params) - return 0; - - params->mode = (int32_t)avio_rl32(model_file_context); - dnn_size += 4; - for (int i = 0; i < 4; ++i) { - params->paddings[i][0] = avio_rl32(model_file_context); - params->paddings[i][1] = avio_rl32(model_file_context); - dnn_size += 8; - } - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); - dnn_size += 8; - layer->params = params; - - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { - return 0; - } - - return dnn_size; -} - -static int before_get_buddy(int given, int paddings, LayerPadModeParam mode) -{ - if (mode == LPMP_SYMMETRIC) { - return (2 * paddings - 1 - given); - } else if (mode == LPMP_REFLECT) { - return (2 * paddings - given); - } else { - av_assert0(!"should not reach here"); - return 0; - } -} - -static int after_get_buddy(int given, int border, LayerPadModeParam mode) -{ - if (mode == LPMP_SYMMETRIC) { - int offset = given - border; - return (border - 1 - offset); - } else if (mode == LPMP_REFLECT) { - int offset = given - border; - return (border - 2 - offset); - } else { - av_assert0(!"should not reach here"); - return 0; - } -} - -int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx) -{ - int32_t before_paddings; - int32_t after_paddings; - float* output; - const LayerPadParams *params = parameters; - - // suppose format is - int32_t input_operand_index = input_operand_indexes[0]; - int number = operands[input_operand_index].dims[0]; - int height = operands[input_operand_index].dims[1]; - int width = operands[input_operand_index].dims[2]; - int channel = operands[input_operand_index].dims[3]; - const float *input = operands[input_operand_index].data; - - int new_number = number + params->paddings[0][0] + params->paddings[0][1]; - int new_height = height + params->paddings[1][0] + params->paddings[1][1]; - int new_width = width + params->paddings[2][0] + params->paddings[2][1]; - int new_channel = channel + params->paddings[3][0] + params->paddings[3][1]; - - int c_stride = channel; - int wc_stride = c_stride * width; - int hwc_stride = wc_stride * height; - - int new_c_stride = new_channel; - int new_wc_stride = new_c_stride * new_width; - int new_hwc_stride = new_wc_stride * new_height; - - DnnOperand *output_operand = &operands[output_operand_index]; - output_operand->dims[0] = new_number; - output_operand->dims[1] = new_height; - output_operand->dims[2] = new_width; - output_operand->dims[3] = new_channel; - output_operand->data_type = operands[input_operand_index].data_type; - output_operand->length = ff_calculate_operand_data_length(output_operand); - if (output_operand->length <= 0) { - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); - return AVERROR(EINVAL); - } - output_operand->data = av_realloc(output_operand->data, output_operand->length); - if (!output_operand->data) { - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); - return AVERROR(ENOMEM); - } - output = output_operand->data; - - // copy the original data - for (int n = 0; n < number; n++) { - for (int h = 0; h < height; h++) { - for (int w = 0; w < width; w++) { - const float *src = input + n * hwc_stride + h * wc_stride + w * c_stride; - float *dst = output + (n + params->paddings[0][0]) * new_hwc_stride - + (h + params->paddings[1][0]) * new_wc_stride - + (w + params->paddings[2][0]) * new_c_stride - + params->paddings[3][0]; - memcpy(dst, src, channel * sizeof(float)); - } - } - } - - // handle the first dimension - before_paddings = params->paddings[0][0]; - after_paddings = params->paddings[0][1]; - for (int n = 0; n < before_paddings; n++) { - float *dst = output + n * new_hwc_stride; - if (params->mode == LPMP_CONSTANT) { - for (int i = 0; i < new_hwc_stride; i++) { - dst[i] = params->constant_values; - } - } - else { - int buddy = before_get_buddy(n, before_paddings, params->mode); - float *src = output + buddy * new_hwc_stride; - memcpy(dst, src, new_hwc_stride * sizeof(float)); - } - } - for (int n = 0; n < after_paddings; n++) { - int given = number + before_paddings + n; - float *dst = output + given * new_hwc_stride; - if (params->mode == LPMP_CONSTANT) { - for (int i = 0; i < new_hwc_stride; i++) { - dst[i] = params->constant_values; - } - } else { - int buddy = after_get_buddy(given, number + before_paddings, params->mode); - float *src = output + buddy * new_hwc_stride; - memcpy(dst, src, new_hwc_stride * sizeof(float)); - } - } - - // handle the second dimension - before_paddings = params->paddings[1][0]; - after_paddings = params->paddings[1][1]; - for (int n = 0; n < new_number; n++) { - float *start = output + n * new_hwc_stride; - for (int h = 0; h < before_paddings; h++) { - float *dst = start + h * new_wc_stride; - if (params->mode == LPMP_CONSTANT) { - for (int i = 0; i < new_wc_stride; i++) { - dst[i] = params->constant_values; - } - } else { - int buddy = before_get_buddy(h, before_paddings, params->mode); - float *src = start + buddy * new_wc_stride; - memcpy(dst, src, new_wc_stride * sizeof(float)); - } - } - for (int h = 0; h < after_paddings; h++) { - int given = height + before_paddings + h; - float *dst = start + given * new_wc_stride; - if (params->mode == LPMP_CONSTANT) { - for (int i = 0; i < new_wc_stride; i++) { - dst[i] = params->constant_values; - } - } else { - int buddy = after_get_buddy(given, height + before_paddings, params->mode); - float *src = start + buddy * new_wc_stride; - memcpy(dst, src, new_wc_stride * sizeof(float)); - } - } - } - - // handle the third dimension - before_paddings = params->paddings[2][0]; - after_paddings = params->paddings[2][1]; - for (int n = 0; n < new_number; n++) { - for (int h = 0; h < new_height; h++) { - float *start = output + n * new_hwc_stride + h * new_wc_stride; - for (int w = 0; w < before_paddings; w++) { - float *dst = start + w * new_c_stride; - if (params->mode == LPMP_CONSTANT) { - for (int i = 0; i < new_c_stride; i++) { - dst[i] = params->constant_values; - } - } else { - int buddy = before_get_buddy(w, before_paddings, params->mode); - float *src = start + buddy * new_c_stride; - memcpy(dst, src, new_c_stride * sizeof(float)); - } - } - for (int w = 0; w < after_paddings; w++) { - int given = width + before_paddings + w; - float *dst = start + given * new_c_stride; - if (params->mode == LPMP_CONSTANT) { - for (int i = 0; i < new_c_stride; i++) { - dst[i] = params->constant_values; - } - } else { - int buddy = after_get_buddy(given, width + before_paddings, params->mode); - float *src = start + buddy * new_c_stride; - memcpy(dst, src, new_c_stride * sizeof(float)); - } - } - } - } - - // handle the fourth dimension - before_paddings = params->paddings[3][0]; - after_paddings = params->paddings[3][1]; - for (int n = 0; n < new_number; n++) { - for (int h = 0; h < new_height; h++) { - for (int w = 0; w < new_width; w++) { - float *start = output + n * new_hwc_stride + h * new_wc_stride + w * new_c_stride; - for (int c = 0; c < before_paddings; c++) { - float *dst = start + c; - if (params->mode == LPMP_CONSTANT) { - *dst = params->constant_values; - } else { - int buddy = before_get_buddy(c, before_paddings, params->mode); - float *src = start + buddy; - *dst = *src; - } - } - for (int c = 0; c < after_paddings; c++) { - int given = channel + before_paddings + c; - float *dst = start + given; - if (params->mode == LPMP_CONSTANT) { - *dst = params->constant_values; - } else { - int buddy = after_get_buddy(given, channel + before_paddings, params->mode); - float *src = start + buddy; - *dst = *src; - } - } - } - } - } - - return 0; -} diff --git a/libavfilter/dnn/dnn_backend_native_layer_pad.h b/libavfilter/dnn/dnn_backend_native_layer_pad.h deleted file mode 100644 index 4f76c67c3f..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layer_pad.h +++ /dev/null @@ -1,43 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * layer pad (equivalent to tf.pad) for native backend. - */ -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H - -#include -#include "dnn_backend_native.h" - -typedef enum {LPMP_CONSTANT, LPMP_REFLECT, LPMP_SYMMETRIC} LayerPadModeParam; - -typedef struct LayerPadParams{ - int32_t paddings[4][2]; - LayerPadModeParam mode; - float constant_values; -} LayerPadParams; - -int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); -int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); - -#endif diff --git a/libavfilter/dnn/dnn_backend_native_layers.c b/libavfilter/dnn/dnn_backend_native_layers.c deleted file mode 100644 index 492939fd36..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layers.c +++ /dev/null @@ -1,42 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include "dnn_backend_native_layers.h" -#include "dnn_backend_native_layer_pad.h" -#include "dnn_backend_native_layer_conv2d.h" -#include "dnn_backend_native_layer_depth2space.h" -#include "dnn_backend_native_layer_maximum.h" -#include "dnn_backend_native_layer_mathbinary.h" -#include "dnn_backend_native_layer_mathunary.h" -#include "dnn_backend_native_layer_avgpool.h" -#include "dnn_backend_native_layer_dense.h" - -const LayerFunc ff_layer_funcs[DLT_COUNT] = { - {NULL, NULL}, - {ff_dnn_execute_layer_conv2d, ff_dnn_load_layer_conv2d}, - {ff_dnn_execute_layer_depth2space, ff_dnn_load_layer_depth2space}, - {ff_dnn_execute_layer_pad, ff_dnn_load_layer_pad}, - {ff_dnn_execute_layer_maximum, ff_dnn_load_layer_maximum}, - {ff_dnn_execute_layer_math_binary, ff_dnn_load_layer_math_binary}, - {ff_dnn_execute_layer_math_unary, ff_dnn_load_layer_math_unary}, - {ff_dnn_execute_layer_avg_pool, ff_dnn_load_layer_avg_pool}, - {ff_dnn_execute_layer_dense, ff_dnn_load_layer_dense}, -}; diff --git a/libavfilter/dnn/dnn_backend_native_layers.h b/libavfilter/dnn/dnn_backend_native_layers.h deleted file mode 100644 index bbd02927c2..0000000000 --- a/libavfilter/dnn/dnn_backend_native_layers.h +++ /dev/null @@ -1,38 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H - -#include -#include "dnn_backend_native.h" - -typedef int (*LAYER_EXEC_FUNC)(DnnOperand *operands, const int32_t *input_operand_indexes, - int32_t output_operand_index, const void *parameters, NativeContext *ctx); -typedef int (*LAYER_LOAD_FUNC)(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); - -typedef struct LayerFunc { - LAYER_EXEC_FUNC pf_exec; - LAYER_LOAD_FUNC pf_load; -}LayerFunc; - -extern const LayerFunc ff_layer_funcs[DLT_COUNT]; - -#endif diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c index 3b5084b67b..4a099d10ed 100644 --- a/libavfilter/dnn/dnn_backend_tf.c +++ b/libavfilter/dnn/dnn_backend_tf.c @@ -24,17 +24,13 @@ */ #include "dnn_backend_tf.h" -#include "dnn_backend_native.h" -#include "dnn_backend_native_layer_conv2d.h" -#include "dnn_backend_native_layer_depth2space.h" #include "libavformat/avio.h" #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/cpu.h" +#include "libavutil/opt.h" #include "libavcodec/defs.h" #include "../internal.h" -#include "dnn_backend_native_layer_pad.h" -#include "dnn_backend_native_layer_maximum.h" #include "dnn_io_proc.h" #include "dnn_backend_common.h" #include "safe_queue.h" @@ -492,363 +488,6 @@ static int load_tf_model(TFModel *tf_model, const char *model_filename) #define NAME_BUFFER_SIZE 256 -static int add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, - ConvolutionalParams* params, const int layer) -{ - TFContext *ctx = &tf_model->ctx; - TF_Operation *op; - TF_OperationDescription *op_desc; - TF_Output input; - int64_t strides[] = {1, 1, 1, 1}; - TF_Tensor *kernel_tensor = NULL, *biases_tensor = NULL; - int64_t dims[4]; - int dims_len; - char name_buffer[NAME_BUFFER_SIZE]; - int32_t size; - - size = params->input_num * params->output_num * params->kernel_size * params->kernel_size; - input.index = 0; - - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); - dims[0] = params->output_num; - dims[1] = params->kernel_size; - dims[2] = params->kernel_size; - dims[3] = params->input_num; - dims_len = 4; - kernel_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float)); - memcpy(TF_TensorData(kernel_tensor), params->kernel, size * sizeof(float)); - TF_SetAttrTensor(op_desc, "value", kernel_tensor, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - goto err; - } - op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - goto err; - } - - snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); - op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); - input.oper = op; - TF_AddInput(op_desc, input); - input.oper = transpose_op; - TF_AddInput(op_desc, input); - TF_SetAttrType(op_desc, "T", TF_FLOAT); - TF_SetAttrType(op_desc, "Tperm", TF_INT32); - op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - goto err; - } - - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); - op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); - input.oper = *cur_op; - TF_AddInput(op_desc, input); - input.oper = op; - TF_AddInput(op_desc, input); - TF_SetAttrType(op_desc, "T", TF_FLOAT); - TF_SetAttrIntList(op_desc, "strides", strides, 4); - TF_SetAttrString(op_desc, "padding", "VALID", 5); - *cur_op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - goto err; - } - - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); - dims[0] = params->output_num; - dims_len = 1; - biases_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float)); - memcpy(TF_TensorData(biases_tensor), params->biases, params->output_num * sizeof(float)); - TF_SetAttrTensor(op_desc, "value", biases_tensor, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - goto err; - } - op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - goto err; - } - - snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); - op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); - input.oper = *cur_op; - TF_AddInput(op_desc, input); - input.oper = op; - TF_AddInput(op_desc, input); - TF_SetAttrType(op_desc, "T", TF_FLOAT); - *cur_op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - goto err; - } - - snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); - switch (params->activation){ - case RELU: - op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); - break; - case TANH: - op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); - break; - case SIGMOID: - op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); - break; - default: - avpriv_report_missing_feature(ctx, "convolutional activation function %d", params->activation); - return AVERROR(ENOSYS); - } - input.oper = *cur_op; - TF_AddInput(op_desc, input); - TF_SetAttrType(op_desc, "T", TF_FLOAT); - *cur_op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - goto err; - } - - return 0; -err: - TF_DeleteTensor(kernel_tensor); - TF_DeleteTensor(biases_tensor); - av_log(ctx, AV_LOG_ERROR, "Failed to add conv layer %d\n", layer); - return DNN_GENERIC_ERROR; -} - -static int add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, - DepthToSpaceParams *params, const int layer) -{ - TFContext *ctx = &tf_model->ctx; - TF_OperationDescription *op_desc; - TF_Output input; - char name_buffer[NAME_BUFFER_SIZE]; - - snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); - op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer); - input.oper = *cur_op; - input.index = 0; - TF_AddInput(op_desc, input); - TF_SetAttrType(op_desc, "T", TF_FLOAT); - TF_SetAttrInt(op_desc, "block_size", params->block_size); - *cur_op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer); - return DNN_GENERIC_ERROR; - } - - return 0; -} - -static int add_pad_layer(TFModel *tf_model, TF_Operation **cur_op, - LayerPadParams *params, const int layer) -{ - TFContext *ctx = &tf_model->ctx; - TF_Operation *op; - TF_Tensor *tensor; - TF_OperationDescription *op_desc; - TF_Output input; - int32_t *pads; - int64_t pads_shape[] = {4, 2}; - - char name_buffer[NAME_BUFFER_SIZE]; - snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer); - - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); - TF_SetAttrType(op_desc, "dtype", TF_INT32); - tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t)); - pads = (int32_t *)TF_TensorData(tensor); - pads[0] = params->paddings[0][0]; - pads[1] = params->paddings[0][1]; - pads[2] = params->paddings[1][0]; - pads[3] = params->paddings[1][1]; - pads[4] = params->paddings[2][0]; - pads[5] = params->paddings[2][1]; - pads[6] = params->paddings[3][0]; - pads[7] = params->paddings[3][1]; - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - TF_DeleteTensor(tensor); - av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer); - return DNN_GENERIC_ERROR; - } - op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - TF_DeleteTensor(tensor); - av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer); - return DNN_GENERIC_ERROR; - } - - op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); - input.oper = *cur_op; - input.index = 0; - TF_AddInput(op_desc, input); - input.oper = op; - TF_AddInput(op_desc, input); - TF_SetAttrType(op_desc, "T", TF_FLOAT); - TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); - TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); - *cur_op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - TF_DeleteTensor(tensor); - av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer); - return DNN_GENERIC_ERROR; - } - - return 0; -} - -static int add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op, - DnnLayerMaximumParams *params, const int layer) -{ - TFContext *ctx = &tf_model->ctx; - TF_Operation *op; - TF_Tensor *tensor; - TF_OperationDescription *op_desc; - TF_Output input; - float *y; - - char name_buffer[NAME_BUFFER_SIZE]; - snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer); - - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); - tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT)); - y = (float *)TF_TensorData(tensor); - *y = params->val.y; - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - TF_DeleteTensor(tensor); - av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer); - return DNN_GENERIC_ERROR; - } - op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - TF_DeleteTensor(tensor); - av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer); - return DNN_GENERIC_ERROR; - } - - snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer); - op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer); - input.oper = *cur_op; - input.index = 0; - TF_AddInput(op_desc, input); - input.oper = op; - TF_AddInput(op_desc, input); - TF_SetAttrType(op_desc, "T", TF_FLOAT); - *cur_op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - TF_DeleteTensor(tensor); - av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer); - return DNN_GENERIC_ERROR; - } - - return 0; -} - -static int load_native_model(TFModel *tf_model, const char *model_filename) -{ - TFContext *ctx = &tf_model->ctx; - int32_t layer; - TF_OperationDescription *op_desc; - TF_Operation *op; - TF_Operation *transpose_op; - TF_Tensor *tensor = NULL; - TF_Output input; - int32_t *transpose_perm; - int64_t transpose_perm_shape[] = {4}; - int64_t input_shape[] = {1, -1, -1, -1}; - int layer_add_res; - DNNModel *model = NULL; - NativeModel *native_model; - - model = ff_dnn_load_model_native(model_filename, DFT_PROCESS_FRAME, NULL, NULL); - if (!model){ - av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n"); - return AVERROR(EINVAL); - } - - native_model = model->model; - tf_model->graph = TF_NewGraph(); - tf_model->status = TF_NewStatus(); - -#define CLEANUP_ON_ERROR(tf_model) \ - { \ - TF_DeleteTensor(tensor); \ - TF_DeleteGraph(tf_model->graph); \ - TF_DeleteStatus(tf_model->status); \ - av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \ - return DNN_GENERIC_ERROR; \ - } - - op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); - TF_SetAttrShape(op_desc, "shape", input_shape, 4); - op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - CLEANUP_ON_ERROR(tf_model); - } - - op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); - TF_SetAttrType(op_desc, "dtype", TF_INT32); - tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t)); - transpose_perm = (int32_t *)TF_TensorData(tensor); - transpose_perm[0] = 1; - transpose_perm[1] = 2; - transpose_perm[2] = 3; - transpose_perm[3] = 0; - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - CLEANUP_ON_ERROR(tf_model); - } - transpose_op = TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - CLEANUP_ON_ERROR(tf_model); - } - - for (layer = 0; layer < native_model->layers_num; ++layer){ - switch (native_model->layers[layer].type){ - case DLT_INPUT: - layer_add_res = 0; - break; - case DLT_CONV2D: - layer_add_res = add_conv_layer(tf_model, transpose_op, &op, - (ConvolutionalParams *)native_model->layers[layer].params, layer); - break; - case DLT_DEPTH_TO_SPACE: - layer_add_res = add_depth_to_space_layer(tf_model, &op, - (DepthToSpaceParams *)native_model->layers[layer].params, layer); - break; - case DLT_MIRROR_PAD: - layer_add_res = add_pad_layer(tf_model, &op, - (LayerPadParams *)native_model->layers[layer].params, layer); - break; - case DLT_MAXIMUM: - layer_add_res = add_maximum_layer(tf_model, &op, - (DnnLayerMaximumParams *)native_model->layers[layer].params, layer); - break; - default: - CLEANUP_ON_ERROR(tf_model); - } - - if (layer_add_res != 0){ - CLEANUP_ON_ERROR(tf_model); - } - } - - op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); - input.oper = op; - input.index = 0; - TF_AddInput(op_desc, input); - TF_FinishOperation(op_desc, tf_model->status); - if (TF_GetCode(tf_model->status) != TF_OK){ - CLEANUP_ON_ERROR(tf_model); - } - - ff_dnn_free_model_native(&model); - - return 0; -} - DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx) { DNNModel *model = NULL; @@ -877,9 +516,8 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ } if (load_tf_model(tf_model, model_filename) != 0){ - if (load_native_model(tf_model, model_filename) != 0){ - goto err; - } + av_log(ctx, AV_LOG_ERROR, "Failed to load TensorFlow model: \"%s\"\n", model_filename); + goto err; } if (ctx->options.nireq <= 0) { diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h index ef8d7ae66f..6b64a2b55a 100644 --- a/libavfilter/dnn_interface.h +++ b/libavfilter/dnn_interface.h @@ -32,7 +32,7 @@ #define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!') -typedef enum {DNN_NATIVE, DNN_TF, DNN_OV} DNNBackendType; +typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType; typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType; diff --git a/libavfilter/tests/dnn-layer-avgpool.c b/libavfilter/tests/dnn-layer-avgpool.c deleted file mode 100644 index 4a925ea22a..0000000000 --- a/libavfilter/tests/dnn-layer-avgpool.c +++ /dev/null @@ -1,197 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include "libavfilter/dnn/dnn_backend_native_layer_avgpool.h" - -#define EPSON 0.00001 - -static int test_with_same(void) -{ - // the input data and expected data are generated with below python code. - /* - import tensorflow as tf - import numpy as np - - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) - y = tf.layers.average_pooling2d(x, pool_size=[2,2], strides=[1,1], padding='VALID') - data = np.random.rand(1, 5, 6, 3); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - - output = sess.run(y, feed_dict={x: data}) - - print("input:") - print(data.shape) - print(list(data.flatten())) - - print("output:") - print(output.shape) - print(list(output.flatten())) - */ - - AvgPoolParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*5*6*3] = { - 0.7461309859908424, 0.7567538372797069, 0.07662743569678687, 0.8882112610336333, 0.9720443314026668, 0.3337200343220823, 0.4421032129780248, - 0.14940809044964876, 0.6773177061961277, 0.9778844630669781, 0.6522650522626998, 0.0317651530878591, 0.31259897552911364, 0.6235936821891896, - 0.40016094349542775, 0.4599222930032276, 0.7893807222960093, 0.8475986363538283, 0.5058802717647394, 0.7827005363222633, 0.3032188123727916, - 0.8983728631302361, 0.20622408444965523, 0.22966072303869878, 0.09535751273161308, 0.8760709100995375, 0.9982324154558745, 0.7904595468621013, - 0.13883671508879347, 0.9332751439533138, 0.0010861680752152214, 0.3607210449251048, 0.6600652759586171, 0.7629572058138805, 0.29441975810476106, - 0.2683471432889405, 0.22574580829831536, 0.8893251976212904, 0.3907737043801005, 0.6421829842863968, 0.6670373870457297, 0.9383850793160277, - 0.4120458907436003, 0.3589847212711481, 0.48047736550128983, 0.6428192648418949, 0.0313661686292348, 0.429357100401472, 0.5123413386514056, - 0.8492446404097114, 0.9045286128486804, 0.8123708563814285, 0.3943245008451698, 0.9576713003177785, 0.5985610965938726, 0.9350833279543561, - 0.8010079897491659, 0.45882114217642866, 0.35275037908941487, 0.4555844661432271, 0.12352455940255314, 0.37801756635035544, 0.2824056214573083, - 0.6229462823245029, 0.7235305681391472, 0.5408259266122064, 0.12142224381781208, 0.34431198802873686, 0.7112823816321276, 0.6307144385115417, - 0.8136734589018082, 0.842095618140585, 0.8602767724004784, 0.6649236853766185, 0.5184782829419623, 0.9119607270982825, 0.3084111974561645, - 0.39460705638161364, 0.17710447526170836, 0.1715485945814199, 0.17277563576521882, 0.40188232428735704, 0.22847985411491878, 0.4135361701550696, - 0.24621846601980057, 0.6576588108454774, 0.6063336087333997, 0.6452342242996931, 0.7071689702737508, 0.1973416063225648 - }; - float expected_output[] = { - 0.75964886, 0.6794307, 0.23580676, 0.5810112, 0.5509369, 0.55973274, 0.5764512, 0.45414522, 0.6601476, 0.52050734, 0.44385415, - 0.50631666, 0.38414115, 0.5170288, 0.544043, 0.61143976, 0.5419003, 0.5579729, 0.5680455, 0.6363218, 0.4655096, 0.51198983, - 0.5270792, 0.66168886, 0.48517057, 0.3513146, 0.7103355, 0.48667657, 0.34504217, 0.7318065, 0.5221889, 0.4746775, 0.69765306, - 0.78766406, 0.34437215, 0.6130092, 0.48132777, 0.7110491, 0.6464378, 0.40914366, 0.4391975, 0.5392131, 0.45033398, 0.37297475, - 0.43326652, 0.4748823, 0.48711336, 0.64649844, 0.51921225, 0.60038865, 0.8538945, 0.7215426, 0.60399896, 0.89988345, 0.707405, - 0.5652921, 0.54241943, 0.41785273, 0.30268195, 0.3263432, 0.3313644, 0.37539417, 0.35238582, 0.34811732, 0.48849532, 0.56799453, - 0.41089734, 0.63070333, 0.5892633, 0.6379743, 0.7604212, 0.5197186, 0.88611877, 0.48666745, 0.45654267, 0.5445326, 0.2399799, - 0.28369135, 0.28949338, 0.20001422, 0.2931559, 0.3240504, 0.44306934, 0.5099349, 0.44572634, 0.68241394, 0.40183762, 0.6452342, - 0.707169, 0.1973416 - }; - float *output; - - params.strides = 1; - params.kernel_size = 2; - params.padding_method = SAME; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 5; - operands[0].dims[2] = 6; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_avg_pool(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); ++i) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -static int test_with_valid(void) -{ - // the input data and expected data are generated with below python code. - /* - import tensorflow as tf - import numpy as np - - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) - y = tf.layers.average_pooling2d(x, pool_size=[2,2], strides=[1,1], padding='VALID') - data = np.random.rand(1, 5, 6, 3); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - - output = sess.run(y, feed_dict={x: data}) - - print("input:") - print(data.shape) - print(list(data.flatten())) - - print("output:") - print(output.shape) - print(list(output.flatten())) - */ - - AvgPoolParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*5*6*3] = { - 0.5046741692941682, 0.9273653202485155, 0.8193878359859937, 0.1904059431360905, 0.8664919633253656, 0.7484625128286059, 0.984534184632278, - 0.31900804890072254, 0.3259426099940872, 0.05388974903570376, 0.7356610151331133, 0.46710858713311965, 0.718553768817036, 0.062478421853278676, - 0.7813224786584609, 0.4826837517658389, 0.9748095400220147, 0.8078547703898341, 0.11976750668368585, 0.8713586777195065, 0.41447321551284355, - 0.9818788239089807, 0.4335715767584073, 0.4059793452147419, 0.3677205907204525, 0.47919995923571, 0.8341395256258882, 0.7059726374074609, - 0.5478504551919791, 0.8622900484790175, 0.8343709722511167, 0.05089827275068537, 0.6465283980840416, 0.544539116066677, 0.39812057257884337, - 0.9578115576866337, 0.25012888117580145, 0.579333516024662, 0.5556732133051457, 0.6119862111181243, 0.0018736758772316398, 0.9795490254040474, - 0.4488085008883018, 0.28947489777011737, 0.4834108668633247, 0.9280490084385024, 0.9895821458049648, 0.31777618554697606, 0.42679693258977847, - 0.74447844466923, 0.9752225305081498, 0.17564130841849335, 0.22382692067314292, 0.009602884447469373, 0.5144884415025782, 0.031622570708844555, - 0.8277532752502512, 0.4111593210409763, 0.5272084646575664, 0.28856508082905297, 0.11317726946036655, 0.7203328275540273, 0.8310055019972384, - 0.8535951508685228, 0.40230347305233227, 0.2819703265132867, 0.6243143957791139, 0.7512463693822311, 0.7523056340495644, 0.8838077258040928, - 0.5472240664033092, 0.2550538284454935, 0.5560317774456567, 0.8966847087518931, 0.6728358284165321, 0.30361297147530875, 0.464343925441822, - 0.34507695659461224, 0.6333175615390685, 0.26661369038523497, 0.9926748632253231, 0.9994267301382666, 0.8684917986974414, 0.3598754806113009, - 0.49550268625464666, 0.03652458679973214, 0.13469081713137177, 0.4579424049273835, 0.48641107969110353, 0.9670250266945365 - }; - float expected_output[1*4*5*3] = { - 0.44918162, 0.7746969, 0.5970757, 0.63113487, 0.5245679, 0.578631, 0.52802926, 0.52042985, 0.6223702, 0.57819676, 0.34922206, - 0.6893124, 0.64503694, 0.37157673, 0.7983793, 0.49094033, 0.47153437, 0.5889187, 0.6025985, 0.30103004, 0.6757697, 0.6126377, - 0.5765268, 0.62440413, 0.7237974, 0.5832023, 0.7004543, 0.49533707, 0.35433105, 0.6472913, 0.44694072, 0.28500956, 0.6628852, - 0.39628282, 0.38472247, 0.6456326, 0.58590746, 0.60042334, 0.47854072, 0.7081889, 0.7219026, 0.5818187, 0.5276401, 0.56669396, - 0.49804622, 0.4463231, 0.4799649, 0.5335578, 0.36531678, 0.4946247, 0.6143306, 0.6498792, 0.5644355, 0.6163815, 0.7432098, - 0.5146416, 0.38221055, 0.6153918, 0.45535153, 0.5272688 - }; - float *output; - - params.strides = 1; - params.kernel_size = 2; - params.padding_method = VALID; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 5; - operands[0].dims[2] = 6; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_avg_pool(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); ++i) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -int main(int argc, char **argv) -{ - if (test_with_same()) - return 1; - if (test_with_valid()) - return 1; - - return 0; -} diff --git a/libavfilter/tests/dnn-layer-conv2d.c b/libavfilter/tests/dnn-layer-conv2d.c deleted file mode 100644 index 5ee60eeaf0..0000000000 --- a/libavfilter/tests/dnn-layer-conv2d.c +++ /dev/null @@ -1,248 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include -#include -#include "libavfilter/dnn/dnn_backend_native_layer_conv2d.h" - -#define EPSON 0.00001 - -static int test_with_same_dilate(void) -{ - // the input data and expected data are generated with below python code. - /* - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) - y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='same', dilation_rate=(2, 2), bias_initializer=tf.keras.initializers.he_normal()) - data = np.random.rand(1, 5, 6, 3); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - - weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) - kernel = weights['conv2d/kernel:0'] - kernel = np.transpose(kernel, [3, 0, 1, 2]) - print("kernel:") - print(kernel.shape) - print(list(kernel.flatten())) - - bias = weights['conv2d/bias:0'] - print("bias:") - print(bias.shape) - print(list(bias.flatten())) - - output = sess.run(y, feed_dict={x: data}) - - print("input:") - print(data.shape) - print(list(data.flatten())) - - print("output:") - print(output.shape) - print(list(output.flatten())) - */ - - ConvolutionalParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*5*6*3] = { - 0.7012556460308194, 0.4233847954643357, 0.19515900664313612, 0.16343083004926495, 0.5758261611052848, 0.9510767434014871, 0.11014085055947687, - 0.906327053637727, 0.8136794715542507, 0.45371764543639526, 0.5768443343523952, 0.19543668786046986, 0.15648326047898609, 0.2099500241141279, - 0.17658777090552413, 0.059335724777169196, 0.1729991838469117, 0.8150514704819208, 0.4435535466703049, 0.3752188477566878, 0.749936650421431, - 0.6823494635284907, 0.10776389679424747, 0.34247481674596836, 0.5147867256244629, 0.9063709728129032, 0.12423605800856818, 0.6064872945412728, - 0.5891681538551459, 0.9865836236466314, 0.9002163879294677, 0.003968273184274618, 0.8628374809643967, 0.1327176268279583, 0.8449799925703798, - 0.1937671869354366, 0.41524410152707425, 0.02038786604756837, 0.49792466069597496, 0.8881874553848784, 0.9683921035597336, 0.4122972568010813, - 0.843553550993252, 0.9588482762501964, 0.5190350762645546, 0.4283584264145317, 0.09781496073714646, 0.9501058833776156, 0.8665541760152776, - 0.31669272550095806, 0.07133074675453632, 0.606438007334886, 0.7007157020538224, 0.4827996264130444, 0.5167615606392761, 0.6385043039312651, - 0.23069664707810555, 0.058233497329354456, 0.06323892961591071, 0.24816458893245974, 0.8646369065257812, 0.24742185893094837, 0.09991225948167437, - 0.625700606979606, 0.7678541502111257, 0.6215834594679912, 0.5623003956582483, 0.07389123942681242, 0.7659100715711249, 0.486061471642225, - 0.9947455699829012, 0.9094911797643259, 0.7644355876253265, 0.05384315321492239, 0.13565394382783613, 0.9810628204953316, 0.007386389078887889, - 0.226182754156241, 0.2609021390764772, 0.24182802076928933, 0.13264782451941648, 0.2035816485767682, 0.005504188177612557, 0.7014619934040155, - 0.956215988391991, 0.5670398541013633, 0.9809764721750784, 0.6886338100487461, 0.5758152317218274, 0.7137823176776179 - }; - float expected_output[1*5*6*2] = { - -0.9480655, -0.7169147, -0.9404794, -0.5567385, -0.8991124, -0.8306558, -0.94487447, -0.8932543, -0.88238764, -0.7301602, - -0.8974813, -0.7026703, -0.8858988, -0.53203243, -0.92881465, -0.5648504, -0.8871471, -0.7000097, -0.91754407, -0.79684794, - -0.760465, -0.117928326, -0.88302773, -0.8975289, -0.70615053, 0.19231977, -0.8318776, -0.386184, -0.80698484, -0.8556624, - -0.7336671, -0.6168619, -0.7658234, -0.63449603, -0.73314047, -0.87502456, -0.58158904, -0.4184259, -0.52618927, -0.13613208, - -0.5093187, -0.21027721, -0.39455596, -0.44507834, -0.22269244, -0.73400885, -0.77655095, -0.74408925, -0.57313335, -0.15333457, - -0.74620694, -0.34858236, -0.42586932, -0.5240488, 0.1634339, -0.2447881, -0.57927346, -0.62732303, -0.82287043, -0.8474058 - }; - float *output; - float kernel[2*3*3*3] = { - 0.26025516, 0.16536498, -0.24351254, 0.33892477, -0.34005195, 0.35202783, 0.34056443, 0.01422739, 0.13799345, 0.29489166, - 0.2781723, 0.178585, 0.22122234, 0.044115514, 0.13134438, 0.31705368, 0.22527462, -0.021323413, 0.115134746, -0.18216397, - -0.21197563, -0.027848959, -0.01704529, -0.12401503, -0.23415318, -0.12661739, -0.35338148, 0.20049328, -0.076153606, - -0.23642601, -0.3125769, -0.025851756, -0.30006272, 0.050762743, 0.32003498, 0.3052225, -0.0017385483, 0.25337684, -0.25664508, - 0.27846587, -0.3112659, 0.2066065, 0.31499845, 0.113178134, 0.09449363, -0.11828774, -0.12671001, -0.36259216, 0.2710235, - -0.19676702, 0.023612618, -0.2596915, -0.34949252, -0.108270735 - }; - float bias[2] = { -1.6574852, -0.72915393 }; - - NativeContext ctx; - ctx.class = NULL; - ctx.options.conv2d_threads = 1; - - params.activation = TANH; - params.has_bias = 1; - params.biases = bias; - params.dilation = 2; - params.input_num = 3; - params.kernel = kernel; - params.kernel_size = 3; - params.output_num = 2; - params.padding_method = SAME; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 5; - operands[0].dims[2] = 6; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms, &ctx); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -static int test_with_valid(void) -{ - // the input data and expected data are generated with below python code. - /* - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) - y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='valid', bias_initializer=tf.keras.initializers.he_normal()) - data = np.random.rand(1, 5, 6, 3); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - - weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) - kernel = weights['conv2d/kernel:0'] - kernel = np.transpose(kernel, [3, 0, 1, 2]) - print("kernel:") - print(kernel.shape) - print(list(kernel.flatten())) - - bias = weights['conv2d/bias:0'] - print("bias:") - print(bias.shape) - print(list(bias.flatten())) - - output = sess.run(y, feed_dict={x: data}) - - print("input:") - print(data.shape) - print(list(data.flatten())) - - print("output:") - print(output.shape) - print(list(output.flatten())) - */ - - ConvolutionalParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*5*6*3] = { - 0.26126657468269665, 0.42762216215337556, 0.7466274030131497, 0.802550266787863, 0.3709323443076644, 0.5919817068197668, 0.49274512279324967, - 0.7170132295090351, 0.0911793215410649, 0.5134213878288361, 0.670132600785118, 0.49417034512633484, 0.03887389460089885, 0.436785102836845, - 0.1490231658611978, 0.6413606121498127, 0.8595987991375995, 0.9132593077586231, 0.7075959004873255, 0.17754995944845464, 0.5212507214937141, - 0.35379732738215475, 0.25205107358505296, 0.3928792840544273, 0.09485294189485782, 0.8685115437448666, 0.6489046799288605, 0.509253797582924, - 0.8993255536791972, 0.18740056466602373, 0.34237617336313986, 0.3871438962989183, 0.1488532571774911, 0.5187002331293636, 0.8137098818752955, - 0.521761863717401, 0.4622312310118274, 0.29038411334638825, 0.16194915718170566, 0.5175999923925211, 0.8852230040101133, 0.0218263385047206, - 0.08482355352852367, 0.3463638568376264, 0.28627127120619733, 0.9553293378948409, 0.4803391055970835, 0.841635695030805, 0.3556828280031952, - 0.06778527221541808, 0.28193560357091596, 0.8399957619031576, 0.03305536359456385, 0.6625039162109645, 0.9300552020023897, 0.8551529138204146, - 0.6133216915522418, 0.222427800857393, 0.1315422686800336, 0.6189144989185527, 0.5346184916866876, 0.8348888624532548, 0.6544834567840291, - 0.2844062293389934, 0.28780026600883324, 0.5372272015684924, 0.6250226011503823, 0.28119106062279453, 0.49655812908420094, 0.6451488959145951, - 0.7362580606834843, 0.44815578616664087, 0.6454760235835586, 0.6794062414265861, 0.045378883014935756, 0.9008388543865096, 0.7949752851269782, - 0.4179928876222264, 0.28733419007048644, 0.996902319501908, 0.5690851338677467, 0.9511814013279738, 0.025323788678181636, 0.5594359732604794, - 0.1213732595086251, 0.7172624313368294, 0.6759328959074691, 0.07252138454885071, 0.17557735158403442, 0.5988895455048769 - }; - float expected_output[1*3*4*2] = { - -0.556947, -0.42143887, -0.092070885, 0.27404794, -0.41886684, 0.0862887, -0.25001016, -0.342721, 0.020730592, 0.04016919, -0.69839877, - -0.06136704, 0.14186388, -0.11655602, -0.23489095, -0.3845829, -0.19017771, 0.1595885, -0.18308741, -0.3071209, -0.5848686, -0.22509028, - -0.6023201, -0.14448485 - }; - float *output; - float kernel[2*3*3*3] = { - -0.25291282, 0.22402048, 0.028642118, -0.14615723, -0.27362752, -0.34801802, -0.2759148, 0.19594926, -0.25029412, 0.34606284, 0.10376671, - -0.1015394, 0.23616093, 0.2134214, 0.35285157, 0.05893758, 0.0024731457, -0.17143056, 0.35758412, 0.2186206, -0.28384736, -0.21206513, - -0.20871592, 0.27070445, 0.25878823, 0.11136332, -0.33737376, 0.08353335, -0.34290665, 0.041805506, -0.09738535, 0.3284936, -0.16838405, - -0.032494456, -0.29193437, 0.033259362, -0.09272635, -0.2802651, -0.28648436, 0.3542878, 0.2432127, -0.24551713, 0.27813476, 0.21024024, - -0.013690501, -0.1350077, -0.07826337, -0.34563828, 0.3220685, -0.07571727, 0.19420576, 0.20783454, 0.18738335, 0.16672492 - }; - float bias[2] = { -0.4773722, -0.19620377 }; - - NativeContext ctx; - ctx.class = NULL; - ctx.options.conv2d_threads = 1; - - params.activation = TANH; - params.has_bias = 1; - params.biases = bias; - params.dilation = 1; - params.input_num = 3; - params.kernel = kernel; - params.kernel_size = 3; - params.output_num = 2; - params.padding_method = VALID; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 5; - operands[0].dims[2] = 6; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms, &ctx); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -int main(int argc, char **argv) -{ - if (test_with_valid()) - return 1; - if (test_with_same_dilate()) - return 1; - - return 0; -} diff --git a/libavfilter/tests/dnn-layer-dense.c b/libavfilter/tests/dnn-layer-dense.c deleted file mode 100644 index 696f7505e5..0000000000 --- a/libavfilter/tests/dnn-layer-dense.c +++ /dev/null @@ -1,131 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include -#include -#include "libavfilter/dnn/dnn_backend_native_layer_dense.h" - -#define EPSON 0.00001 - -static int test(void) -{ - // the input data and expected data are generated with below python code. - /* - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) - y = tf.layers.dense(input_x, 3, activation=tf.nn.sigmoid, bias_initializer=tf.keras.initializers.he_normal()) - data = np.random.rand(1, 5, 6, 3); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - - weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) - kernel = weights['dense/kernel:0'] - kernel = np.transpose(kernel, [1, 0]) - print("kernel:") - print(kernel.shape) - print(list(kernel.flatten())) - - bias = weights['dense/bias:0'] - print("bias:") - print(bias.shape) - print(list(bias.flatten())) - - output = sess.run(y, feed_dict={x: data}) - - print("input:") - print(data.shape) - print(list(data.flatten())) - - print("output:") - print(output.shape) - print(list(output.flatten())) - */ - - DenseParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*5*6*3] = { - 0.5552418686576308, 0.20653189262022464, 0.31115120939398877, 0.5897014433221428, 0.37340078861060655, 0.6470921693941893, 0.8039950367872679, 0.8762700891949274, - 0.6556655583829558, 0.5911096107039339, 0.18640250865290997, 0.2803248779238966, 0.31586613136402053, 0.9447300740056483, 0.9443980824873418, 0.8158851991115941, - 0.5631010340387631, 0.9407402251929046, 0.6485434876551682, 0.5631376966470001, 0.17581924875609634, 0.7033802439103178, 0.04802402495561675, 0.9183681450194972, - 0.46059317944364, 0.07964160481596883, 0.871787076270302, 0.973743142324361, 0.15923146943258415, 0.8212946080584571, 0.5415954459227064, 0.9552813822803975, - 0.4908552668172057, 0.33723691635292274, 0.46588057864910026, 0.8994239961321776, 0.09845220457674186, 0.1713400292123486, 0.39570294912818826, 0.08018956486392803, - 0.5290478278169032, 0.7141906125920976, 0.0320878067840098, 0.6412406575332606, 0.0075712007102423096, 0.7150828462386156, 0.1311989216968138, 0.4706847944253756, - 0.5447610794883336, 0.3430923933318001, 0.536082357943209, 0.4371629342483694, 0.40227962985019927, 0.3553806249465469, 0.031806622424259245, 0.7053916426174, - 0.3261570237309813, 0.419500213292063, 0.3155691223480851, 0.05664028113178088, 0.3636491555914486, 0.8502419746667123, 0.9836596530684955, 0.1628681802975801, - 0.09410832912479894, 0.28407218939480294, 0.7983417928813697, 0.24132158596506748, 0.8154729498062224, 0.29173768373895637, 0.13407102008052096, 0.18705786678800385, - 0.7167943621295573, 0.09222004247174376, 0.2319220738766018, 0.17708964382285064, 0.1391440370249517, 0.3254088083499256, 0.4013916894718289, 0.4819742663322323, - 0.15080103744648077, 0.9302407847555013, 0.9397597961319524, 0.5719200825550793, 0.9538938024682824, 0.9583882089203861, 0.5168861091262276, 0.1926396841842669, - 0.6781176744337578, 0.719366447288566 - }; - float expected_output[1*5*6*3] = { - -0.3921688, -0.9243112, -0.29659146, -0.64000785, -0.9466343, -0.62125254, -0.71759033, -0.9171336, -0.735589, -0.34365994, - -0.92100817, -0.23903961, -0.8962277, -0.9521279, -0.90962386, -0.7488303, -0.9563761, -0.7701762, -0.40800542, -0.87684774, - -0.3339763, -0.6354543, -0.97068924, -0.6246325, -0.6992075, -0.9706726, -0.6818918, -0.51864433, -0.9592881, -0.51187396, - -0.7423632, -0.89911884, -0.7457824, -0.82009757, -0.96402895, -0.8235518, -0.61980766, -0.94494647, -0.5410502, -0.8281218, - -0.95508635, -0.8201453, -0.5937325, -0.8679507, -0.500767, -0.39430764, -0.93967676, -0.32183182, -0.58913624, -0.939717, - -0.55179894, -0.55004454, -0.9214453, -0.4889004, -0.75294703, -0.9118363, -0.7200309, -0.3248641, -0.8878874, -0.18977344, - -0.8873837, -0.9571257, -0.90145934, -0.50521654, -0.93739635, -0.39051685, -0.61143184, -0.9591179, -0.605999, -0.40008977, - -0.92219675, -0.26732883, -0.19607787, -0.9172511, -0.07068595, -0.5409857, -0.9387041, -0.44181606, -0.4705004, -0.8899935, - -0.37997037, -0.66105115, -0.89754754, -0.68141997, -0.6324047, -0.886776, -0.65066385, -0.8334821, -0.94801456, -0.83297 - }; - float *output; - float kernel[3*3] = { - 0.56611896, -0.5144603, -0.82600045, 0.19219112, 0.3835776, -0.7475352, 0.5209291, -0.6301091, -0.99442935}; - float bias[3] = {-0.3654299, -1.5711838, -0.15546428}; - - params.activation = TANH; - params.has_bias = 1; - params.biases = bias; - params.input_num = 3; - params.kernel = kernel; - params.output_num = 3; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 5; - operands[0].dims[2] = 6; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_dense(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -int main(int argc, char **argv) -{ - if (test()) - return 1; - - return 0; -} diff --git a/libavfilter/tests/dnn-layer-depth2space.c b/libavfilter/tests/dnn-layer-depth2space.c deleted file mode 100644 index 958247e675..0000000000 --- a/libavfilter/tests/dnn-layer-depth2space.c +++ /dev/null @@ -1,102 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include -#include -#include "libavfilter/dnn/dnn_backend_native.h" -#include "libavfilter/dnn/dnn_backend_native_layer_depth2space.h" - -#define EPSON 0.00001 - -static int test(void) -{ - // the input data and expected data are generated with below python code. - /* - x = tf.placeholder(tf.float32, shape=[1, None, None, 4]) - y = tf.depth_to_space(x, 2) - data = np.random.rand(1, 5, 3, 4); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - - output = sess.run(y, feed_dict={x: data}) - - print("input:") - print(data.shape) - print(list(data.flatten())) - - print("output:") - print(output.shape) - print(list(output.flatten())) - */ - - DepthToSpaceParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*5*3*4] = { - 0.09771065121566602, 0.6336807372403175, 0.5142416549709786, 0.8027206567330333, 0.2154276025069397, 0.12112878462616772, 0.913936596765778, - 0.38881443647542646, 0.5850447615898835, 0.9311499327398275, 0.3613660929428246, 0.5420722002125493, 0.6002131190230359, 0.44800665702299525, - 0.7271322557896777, 0.3869293511885826, 0.5144404769364138, 0.6910844856987723, 0.6142102742269762, 0.6249991371621018, 0.45663376215836626, - 0.19523477129943423, 0.2483895888532045, 0.64326768256278, 0.5485877602998981, 0.45442067849873546, 0.529374943304256, 0.30439850391811885, - 0.11961343361340993, 0.2909643484561082, 0.9810970344127848, 0.8886928489786549, 0.6112237084436409, 0.8852482695156674, 0.9110868043114374, - 0.21242780027585217, 0.7101536973207572, 0.9709717457443375, 0.2702666770969332, 0.7718295953780221, 0.3957005164588574, 0.24383544252475453, - 0.040143453532367035, 0.26358051835323115, 0.013130251443791319, 0.3016550481482074, 0.03582340459943956, 0.718025513612361, 0.09844204177633753, - 0.04433767496953056, 0.6221895044119757, 0.6190414032940228, 0.8963550834625371, 0.5642449700064629, 0.2482982014723497, 0.17824909294583013, - 0.024401882408643272, 0.21742800875253465, 0.6794724473181843, 0.4814830479242237 - }; - float expected_output[1*10*6*1] = { - 0.097710654, 0.63368076, 0.2154276, 0.12112878, 0.58504474, 0.93114996, 0.51424164, 0.80272067, 0.9139366, 0.38881445, - 0.3613661, 0.5420722, 0.6002131, 0.44800666, 0.5144405, 0.6910845, 0.45663378, 0.19523478, 0.72713226, 0.38692936, - 0.61421025, 0.62499917, 0.24838959, 0.6432677, 0.54858774, 0.4544207, 0.11961343, 0.29096434, 0.6112237, 0.88524824, - 0.52937496, 0.3043985, 0.98109704, 0.88869286, 0.9110868, 0.2124278, 0.7101537, 0.97097176, 0.3957005, 0.24383545, - 0.013130251, 0.30165505, 0.27026668, 0.7718296, 0.040143453, 0.26358053, 0.035823405, 0.7180255, 0.09844204, - 0.044337675, 0.8963551, 0.564245, 0.024401883, 0.21742801, 0.6221895, 0.6190414, 0.2482982, 0.17824909, 0.67947245, 0.48148304 - }; - float *output; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 5; - operands[0].dims[2] = 3; - operands[0].dims[3] = 4; - operands[1].data = NULL; - - input_indexes[0] = 0; - params.block_size = 2; - ff_dnn_execute_layer_depth2space(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -int main(int argc, char **argv) -{ - return test(); -} diff --git a/libavfilter/tests/dnn-layer-mathbinary.c b/libavfilter/tests/dnn-layer-mathbinary.c deleted file mode 100644 index 2e41dc1ae7..0000000000 --- a/libavfilter/tests/dnn-layer-mathbinary.c +++ /dev/null @@ -1,214 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include -#include -#include "libavfilter/dnn/dnn_backend_native_layer_mathbinary.h" -#include "libavutil/avassert.h" - -#define EPSON 0.00005 - -static float get_expected(float f1, float f2, DNNMathBinaryOperation op) -{ - switch (op) - { - case DMBO_SUB: - return f1 - f2; - case DMBO_ADD: - return f1 + f2; - case DMBO_MUL: - return f1 * f2; - case DMBO_REALDIV: - return f1 / f2; - case DMBO_MINIMUM: - return (f1 < f2) ? f1 : f2; - case DMBO_FLOORMOD: - return (float)((int)(f1) % (int)(f2)); - default: - av_assert0(!"not supported yet"); - return 0.f; - } -} - -static int test_broadcast_input0(DNNMathBinaryOperation op) -{ - DnnLayerMathBinaryParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*1*2*3] = { - -3, 2.5, 2, -2.1, 7.8, 100 - }; - float *output; - - params.bin_op = op; - params.input0_broadcast = 1; - params.input1_broadcast = 0; - params.v = 7.28; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 1; - operands[0].dims[2] = 2; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_math_binary(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(input) / sizeof(float); i++) { - float expected_output = get_expected(params.v, input[i], op); - if (fabs(output[i] - expected_output) > EPSON) { - printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", - op, i, output[i], expected_output, __FILE__, __LINE__); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -static int test_broadcast_input1(DNNMathBinaryOperation op) -{ - DnnLayerMathBinaryParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*1*2*3] = { - -3, 2.5, 2, -2.1, 7.8, 100 - }; - float *output; - - params.bin_op = op; - params.input0_broadcast = 0; - params.input1_broadcast = 1; - params.v = 7.28; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 1; - operands[0].dims[2] = 2; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_math_binary(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(input) / sizeof(float); i++) { - float expected_output = get_expected(input[i], params.v, op); - if (fabs(output[i] - expected_output) > EPSON) { - printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", - op, i, output[i], expected_output, __FILE__, __LINE__); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -static int test_no_broadcast(DNNMathBinaryOperation op) -{ - DnnLayerMathBinaryParams params; - DnnOperand operands[3]; - int32_t input_indexes[2]; - float input0[1*1*2*3] = { - -3, 2.5, 2, -2.1, 7.8, 100 - }; - float input1[1*1*2*3] = { - -1, 2, 3, -21, 8, 10.0 - }; - float *output; - - params.bin_op = op; - params.input0_broadcast = 0; - params.input1_broadcast = 0; - - operands[0].data = input0; - operands[0].dims[0] = 1; - operands[0].dims[1] = 1; - operands[0].dims[2] = 2; - operands[0].dims[3] = 3; - operands[1].data = input1; - operands[1].dims[0] = 1; - operands[1].dims[1] = 1; - operands[1].dims[2] = 2; - operands[1].dims[3] = 3; - operands[2].data = NULL; - - input_indexes[0] = 0; - input_indexes[1] = 1; - ff_dnn_execute_layer_math_binary(operands, input_indexes, 2, ¶ms, NULL); - - output = operands[2].data; - for (int i = 0; i < sizeof(input0) / sizeof(float); i++) { - float expected_output = get_expected(input0[i], input1[i], op); - if (fabs(output[i] - expected_output) > EPSON) { - printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", - op, i, output[i], expected_output, __FILE__, __LINE__); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -static int test(DNNMathBinaryOperation op) -{ - if (test_broadcast_input0(op)) - return 1; - - if (test_broadcast_input1(op)) - return 1; - - if (test_no_broadcast(op)) - return 1; - - return 0; -} - -int main(int argc, char **argv) -{ - if (test(DMBO_SUB)) - return 1; - - if (test(DMBO_ADD)) - return 1; - - if (test(DMBO_MUL)) - return 1; - - if (test(DMBO_REALDIV)) - return 1; - - if (test(DMBO_MINIMUM)) - return 1; - - if (test(DMBO_FLOORMOD)) - return 1; - - return 0; -} diff --git a/libavfilter/tests/dnn-layer-mathunary.c b/libavfilter/tests/dnn-layer-mathunary.c deleted file mode 100644 index 0f84c12960..0000000000 --- a/libavfilter/tests/dnn-layer-mathunary.c +++ /dev/null @@ -1,148 +0,0 @@ -/* - * Copyright (c) 2020 - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include -#include -#include "libavfilter/dnn/dnn_backend_native_layer_mathunary.h" -#include "libavutil/avassert.h" - -#define EPS 0.00001 - -static float get_expected(float f, DNNMathUnaryOperation op) -{ - switch (op) - { - case DMUO_ABS: - return (f >= 0) ? f : -f; - case DMUO_SIN: - return sin(f); - case DMUO_COS: - return cos(f); - case DMUO_TAN: - return tan(f); - case DMUO_ASIN: - return asin(f); - case DMUO_ACOS: - return acos(f); - case DMUO_ATAN: - return atan(f); - case DMUO_SINH: - return sinh(f); - case DMUO_COSH: - return cosh(f); - case DMUO_TANH: - return tanh(f); - case DMUO_ASINH: - return asinh(f); - case DMUO_ACOSH: - return acosh(f); - case DMUO_ATANH: - return atanh(f); - case DMUO_CEIL: - return ceil(f); - case DMUO_FLOOR: - return floor(f); - case DMUO_ROUND: - return round(f); - case DMUO_EXP: - return exp(f); - default: - av_assert0(!"not supported yet"); - return 0.f; - } -} - -static int test(DNNMathUnaryOperation op) -{ - DnnLayerMathUnaryParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*1*3*3] = { - 0.1, 0.5, 0.75, -3, 2.5, 2, -2.1, 7.8, 100}; - float *output; - - params.un_op = op; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 1; - operands[0].dims[2] = 3; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_math_unary(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(input) / sizeof(float); ++i) { - float expected_output = get_expected(input[i], op); - int output_nan = isnan(output[i]); - int expected_nan = isnan(expected_output); - if ((!output_nan && !expected_nan && fabs(output[i] - expected_output) > EPS) || - (output_nan && !expected_nan) || (!output_nan && expected_nan)) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; -} - -int main(int agrc, char **argv) -{ - if (test(DMUO_ABS)) - return 1; - if (test(DMUO_SIN)) - return 1; - if (test(DMUO_COS)) - return 1; - if (test(DMUO_TAN)) - return 1; - if (test(DMUO_ASIN)) - return 1; - if (test(DMUO_ACOS)) - return 1; - if (test(DMUO_ATAN)) - return 1; - if (test(DMUO_SINH)) - return 1; - if (test(DMUO_COSH)) - return 1; - if (test(DMUO_TANH)) - return 1; - if (test(DMUO_ASINH)) - return 1; - if (test(DMUO_ACOSH)) - return 1; - if (test(DMUO_ATANH)) - return 1; - if (test(DMUO_CEIL)) - return 1; - if (test(DMUO_FLOOR)) - return 1; - if (test(DMUO_ROUND)) - return 1; - if (test(DMUO_EXP)) - return 1; - return 0; -} diff --git a/libavfilter/tests/dnn-layer-maximum.c b/libavfilter/tests/dnn-layer-maximum.c deleted file mode 100644 index bf22f3719f..0000000000 --- a/libavfilter/tests/dnn-layer-maximum.c +++ /dev/null @@ -1,71 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include -#include -#include "libavfilter/dnn/dnn_backend_native_layer_maximum.h" - -#define EPSON 0.00001 - -static int test(void) -{ - DnnLayerMaximumParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*1*2*3] = { - -3, 2.5, 2, -2.1, 7.8, 100 - }; - float *output; - - params.val.y = 2.3; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 1; - operands[0].dims[2] = 2; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_maximum(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(input) / sizeof(float); i++) { - float expected_output = input[i] > params.val.y ? input[i] : params.val.y; - if (fabs(output[i] - expected_output) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; - -} - -int main(int argc, char **argv) -{ - if (test()) - return 1; - - return 0; -} diff --git a/libavfilter/tests/dnn-layer-pad.c b/libavfilter/tests/dnn-layer-pad.c deleted file mode 100644 index a8443ce3be..0000000000 --- a/libavfilter/tests/dnn-layer-pad.c +++ /dev/null @@ -1,239 +0,0 @@ -/* - * Copyright (c) 2019 Guo Yejun - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include -#include -#include -#include "libavfilter/dnn/dnn_backend_native_layer_pad.h" - -#define EPSON 0.00001 - -static int test_with_mode_symmetric(void) -{ - // the input data and expected data are generated with below python code. - /* - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) - y = tf.pad(x, [[0, 0], [2, 3], [3, 2], [0, 0]], 'SYMMETRIC') - data = np.arange(48).reshape(1, 4, 4, 3); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - output = sess.run(y, feed_dict={x: data}) - - print(list(data.flatten())) - print(list(output.flatten())) - print(data.shape) - print(output.shape) - */ - - LayerPadParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*4*4*3] = { - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 - }; - float expected_output[1*9*9*3] = { - 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 6.0, 7.0, 8.0, 3.0, - 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 6.0, 7.0, 8.0, 3.0, 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, - 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, - 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 30.0, 31.0, 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, - 34.0, 35.0, 30.0, 31.0, 32.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, - 44.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, 44.0, 30.0, 31.0, 32.0, - 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, - 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0 - }; - float *output; - - params.mode = LPMP_SYMMETRIC; - params.paddings[0][0] = 0; - params.paddings[0][1] = 0; - params.paddings[1][0] = 2; - params.paddings[1][1] = 3; - params.paddings[2][0] = 3; - params.paddings[2][1] = 2; - params.paddings[3][0] = 0; - params.paddings[3][1] = 0; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 4; - operands[0].dims[2] = 4; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; - -} - -static int test_with_mode_reflect(void) -{ - // the input data and expected data are generated with below python code. - /* - x = tf.placeholder(tf.float32, shape=[3, None, None, 3]) - y = tf.pad(x, [[1, 2], [0, 0], [0, 0], [0, 0]], 'REFLECT') - data = np.arange(36).reshape(3, 2, 2, 3); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - output = sess.run(y, feed_dict={x: data}) - - print(list(data.flatten())) - print(list(output.flatten())) - print(data.shape) - print(output.shape) - */ - - LayerPadParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[3*2*2*3] = { - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 - }; - float expected_output[6*2*2*3] = { - 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, - 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, - 35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 - }; - float *output; - - params.mode = LPMP_REFLECT; - params.paddings[0][0] = 1; - params.paddings[0][1] = 2; - params.paddings[1][0] = 0; - params.paddings[1][1] = 0; - params.paddings[2][0] = 0; - params.paddings[2][1] = 0; - params.paddings[3][0] = 0; - params.paddings[3][1] = 0; - - operands[0].data = input; - operands[0].dims[0] = 3; - operands[0].dims[1] = 2; - operands[0].dims[2] = 2; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; - -} - -static int test_with_mode_constant(void) -{ - // the input data and expected data are generated with below python code. - /* - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) - y = tf.pad(x, [[0, 0], [1, 0], [0, 0], [1, 2]], 'CONSTANT', constant_values=728) - data = np.arange(12).reshape(1, 2, 2, 3); - - sess=tf.Session() - sess.run(tf.global_variables_initializer()) - output = sess.run(y, feed_dict={x: data}) - - print(list(data.flatten())) - print(list(output.flatten())) - print(data.shape) - print(output.shape) - */ - - LayerPadParams params; - DnnOperand operands[2]; - int32_t input_indexes[1]; - float input[1*2*2*3] = { - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 - }; - float expected_output[1*3*2*6] = { - 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, - 728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, 728.0, 728.0, - 728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, 728.0 - }; - float *output; - - params.mode = LPMP_CONSTANT; - params.constant_values = 728; - params.paddings[0][0] = 0; - params.paddings[0][1] = 0; - params.paddings[1][0] = 1; - params.paddings[1][1] = 0; - params.paddings[2][0] = 0; - params.paddings[2][1] = 0; - params.paddings[3][0] = 1; - params.paddings[3][1] = 2; - - operands[0].data = input; - operands[0].dims[0] = 1; - operands[0].dims[1] = 2; - operands[0].dims[2] = 2; - operands[0].dims[3] = 3; - operands[1].data = NULL; - - input_indexes[0] = 0; - ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); - - output = operands[1].data; - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { - if (fabs(output[i] - expected_output[i]) > EPSON) { - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); - av_freep(&output); - return 1; - } - } - - av_freep(&output); - return 0; - -} - -int main(int argc, char **argv) -{ - if (test_with_mode_symmetric()) - return 1; - - if (test_with_mode_reflect()) - return 1; - - if (test_with_mode_constant()) - return 1; -} diff --git a/libavfilter/vf_derain.c b/libavfilter/vf_derain.c index 7e84cd65a3..35e1ae736a 100644 --- a/libavfilter/vf_derain.c +++ b/libavfilter/vf_derain.c @@ -44,7 +44,6 @@ static const AVOption derain_options[] = { { "derain", "derain filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "type" }, { "dehaze", "dehaze filter flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "type" }, { "dnn_backend", "DNN backend", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS, "backend" }, - { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, #if (CONFIG_LIBTENSORFLOW == 1) { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, #endif diff --git a/libavfilter/vf_dnn_processing.c b/libavfilter/vf_dnn_processing.c index 28937346b5..558de9ee27 100644 --- a/libavfilter/vf_dnn_processing.c +++ b/libavfilter/vf_dnn_processing.c @@ -46,7 +46,6 @@ typedef struct DnnProcessingContext { #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM static const AVOption dnn_processing_options[] = { { "dnn_backend", "DNN backend", OFFSET(backend_type), AV_OPT_TYPE_INT, { .i64 = 2 }, INT_MIN, INT_MAX, FLAGS, "backend" }, - { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, #if (CONFIG_LIBTENSORFLOW == 1) { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, #endif diff --git a/libavfilter/vf_sr.c b/libavfilter/vf_sr.c index e9fe746bae..e06ae91d7c 100644 --- a/libavfilter/vf_sr.c +++ b/libavfilter/vf_sr.c @@ -47,7 +47,6 @@ typedef struct SRContext { #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM static const AVOption sr_options[] = { { "dnn_backend", "DNN backend used for model execution", OFFSET(dnnctx.backend_type), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, FLAGS, "backend" }, - { "native", "native backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, 0, 0, FLAGS, "backend" }, #if (CONFIG_LIBTENSORFLOW == 1) { "tensorflow", "tensorflow backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, 0, 0, FLAGS, "backend" }, #endif diff --git a/tests/Makefile b/tests/Makefile index 1d50e1d175..3634f77f9c 100644 --- a/tests/Makefile +++ b/tests/Makefile @@ -172,7 +172,6 @@ include $(SRC_PATH)/tests/fate/cover-art.mak include $(SRC_PATH)/tests/fate/dca.mak include $(SRC_PATH)/tests/fate/demux.mak include $(SRC_PATH)/tests/fate/dfa.mak -include $(SRC_PATH)/tests/fate/dnn.mak include $(SRC_PATH)/tests/fate/dnxhd.mak include $(SRC_PATH)/tests/fate/dpcm.mak include $(SRC_PATH)/tests/fate/dvvideo.mak diff --git a/tests/fate/dnn.mak b/tests/fate/dnn.mak deleted file mode 100644 index a30a2976d9..0000000000 --- a/tests/fate/dnn.mak +++ /dev/null @@ -1,45 +0,0 @@ -DNNTESTSDIR := libavfilter/tests - -FATE_DNN += fate-dnn-layer-pad -fate-dnn-layer-pad: $(DNNTESTSDIR)/dnn-layer-pad$(EXESUF) -fate-dnn-layer-pad: CMD = run $(DNNTESTSDIR)/dnn-layer-pad$(EXESUF) -fate-dnn-layer-pad: CMP = null - -FATE_DNN += fate-dnn-layer-conv2d -fate-dnn-layer-conv2d: $(DNNTESTSDIR)/dnn-layer-conv2d$(EXESUF) -fate-dnn-layer-conv2d: CMD = run $(DNNTESTSDIR)/dnn-layer-conv2d$(EXESUF) -fate-dnn-layer-conv2d: CMP = null - -FATE_DNN += fate-dnn-layer-dense -fate-dnn-layer-dense: $(DNNTESTSDIR)/dnn-layer-dense$(EXESUF) -fate-dnn-layer-dense: CMD = run $(DNNTESTSDIR)/dnn-layer-dense$(EXESUF) -fate-dnn-layer-dense: CMP = null - -FATE_DNN += fate-dnn-layer-depth2space -fate-dnn-layer-depth2space: $(DNNTESTSDIR)/dnn-layer-depth2space$(EXESUF) -fate-dnn-layer-depth2space: CMD = run $(DNNTESTSDIR)/dnn-layer-depth2space$(EXESUF) -fate-dnn-layer-depth2space: CMP = null - -FATE_DNN += fate-dnn-layer-mathbinary -fate-dnn-layer-mathbinary: $(DNNTESTSDIR)/dnn-layer-mathbinary$(EXESUF) -fate-dnn-layer-mathbinary: CMD = run $(DNNTESTSDIR)/dnn-layer-mathbinary$(EXESUF) -fate-dnn-layer-mathbinary: CMP = null - -FATE_DNN += fate-dnn-layer-maximum -fate-dnn-layer-maximum: $(DNNTESTSDIR)/dnn-layer-maximum$(EXESUF) -fate-dnn-layer-maximum: CMD = run $(DNNTESTSDIR)/dnn-layer-maximum$(EXESUF) -fate-dnn-layer-maximum: CMP = null - -FATE_DNN += fate-dnn-layer-mathunary -fate-dnn-layer-mathunary: $(DNNTESTSDIR)/dnn-layer-mathunary$(EXESUF) -fate-dnn-layer-mathunary: CMD = run $(DNNTESTSDIR)/dnn-layer-mathunary$(EXESUF) -fate-dnn-layer-mathunary: CMP = null - -FATE_DNN += fate-dnn-layer-avgpool -fate-dnn-layer-avgpool: $(DNNTESTSDIR)/dnn-layer-avgpool$(EXESUF) -fate-dnn-layer-avgpool: CMD = run $(DNNTESTSDIR)/dnn-layer-avgpool$(EXESUF) -fate-dnn-layer-avgpool: CMP = null - -FATE-$(CONFIG_DNN) += $(FATE_DNN) - -fate-dnn: $(FATE_DNN)