@@ -47,10 +47,10 @@ typedef struct TaskItem {
} TaskItem;
// one task might have multiple inferences
-typedef struct InferenceItem {
+typedef struct LastLevelTaskItem {
TaskItem *task;
uint32_t bbox_index;
-} InferenceItem;
+} LastLevelTaskItem;
/**
* Common Async Execution Mechanism for the DNN Backends.
@@ -46,25 +46,25 @@ static const AVClass dnn_native_class = {
.category = AV_CLASS_CATEGORY_FILTER,
};
-static DNNReturnType execute_model_native(Queue *inference_queue);
+static DNNReturnType execute_model_native(Queue *lltask_queue);
-static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue)
+static DNNReturnType extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
{
NativeModel *native_model = task->model;
NativeContext *ctx = &native_model->ctx;
- InferenceItem *inference = av_malloc(sizeof(*inference));
+ LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask));
- if (!inference) {
- av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for InferenceItem\n");
+ if (!lltask) {
+ av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n");
return DNN_ERROR;
}
task->inference_todo = 1;
task->inference_done = 0;
- inference->task = task;
+ lltask->task = task;
- if (ff_queue_push_back(inference_queue, inference) < 0) {
- av_log(ctx, AV_LOG_ERROR, "Failed to push back inference_queue.\n");
- av_freep(&inference);
+ if (ff_queue_push_back(lltask_queue, lltask) < 0) {
+ av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
+ av_freep(&lltask);
return DNN_ERROR;
}
return DNN_SUCCESS;
@@ -116,13 +116,13 @@ static DNNReturnType get_output_native(void *model, const char *input_name, int
goto err;
}
- if (extract_inference_from_task(&task, native_model->inference_queue) != DNN_SUCCESS) {
- av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
+ if (extract_lltask_from_task(&task, native_model->lltask_queue) != DNN_SUCCESS) {
+ av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
ret = DNN_ERROR;
goto err;
}
- ret = execute_model_native(native_model->inference_queue);
+ ret = execute_model_native(native_model->lltask_queue);
*output_width = task.out_frame->width;
*output_height = task.out_frame->height;
@@ -223,8 +223,8 @@ DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType f
goto fail;
}
- native_model->inference_queue = ff_queue_create();
- if (!native_model->inference_queue) {
+ native_model->lltask_queue = ff_queue_create();
+ if (!native_model->lltask_queue) {
goto fail;
}
@@ -297,24 +297,24 @@ fail:
return NULL;
}
-static DNNReturnType execute_model_native(Queue *inference_queue)
+static DNNReturnType execute_model_native(Queue *lltask_queue)
{
NativeModel *native_model = NULL;
NativeContext *ctx = NULL;
int32_t layer;
DNNData input, output;
DnnOperand *oprd = NULL;
- InferenceItem *inference = NULL;
+ LastLevelTaskItem *lltask = NULL;
TaskItem *task = NULL;
DNNReturnType ret = 0;
- inference = ff_queue_pop_front(inference_queue);
- if (!inference) {
- av_log(NULL, AV_LOG_ERROR, "Failed to get inference item\n");
+ lltask = ff_queue_pop_front(lltask_queue);
+ if (!lltask) {
+ av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
ret = DNN_ERROR;
goto err;
}
- task = inference->task;
+ task = lltask->task;
native_model = task->model;
ctx = &native_model->ctx;
@@ -428,7 +428,7 @@ static DNNReturnType execute_model_native(Queue *inference_queue)
}
task->inference_done++;
err:
- av_freep(&inference);
+ av_freep(&lltask);
return ret;
}
@@ -459,26 +459,26 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, DNNExecBasePara
return DNN_ERROR;
}
- if (extract_inference_from_task(task, native_model->inference_queue) != DNN_SUCCESS) {
- av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
+ if (extract_lltask_from_task(task, native_model->lltask_queue) != DNN_SUCCESS) {
+ av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
return DNN_ERROR;
}
- return execute_model_native(native_model->inference_queue);
+ return execute_model_native(native_model->lltask_queue);
}
DNNReturnType ff_dnn_flush_native(const DNNModel *model)
{
NativeModel *native_model = model->model;
- if (ff_queue_size(native_model->inference_queue) == 0) {
+ if (ff_queue_size(native_model->lltask_queue) == 0) {
// no pending task need to flush
return DNN_SUCCESS;
}
// for now, use sync node with flush operation
// Switch to async when it is supported
- return execute_model_native(native_model->inference_queue);
+ return execute_model_native(native_model->lltask_queue);
}
DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out)
@@ -536,11 +536,11 @@ void ff_dnn_free_model_native(DNNModel **model)
av_freep(&native_model->operands);
}
- while (ff_queue_size(native_model->inference_queue) != 0) {
- InferenceItem *item = ff_queue_pop_front(native_model->inference_queue);
+ while (ff_queue_size(native_model->lltask_queue) != 0) {
+ LastLevelTaskItem *item = ff_queue_pop_front(native_model->lltask_queue);
av_freep(&item);
}
- ff_queue_destroy(native_model->inference_queue);
+ ff_queue_destroy(native_model->lltask_queue);
while (ff_queue_size(native_model->task_queue) != 0) {
TaskItem *item = ff_queue_pop_front(native_model->task_queue);
@@ -129,7 +129,7 @@ typedef struct NativeModel{
DnnOperand *operands;
int32_t operands_num;
Queue *task_queue;
- Queue *inference_queue;
+ Queue *lltask_queue;
} NativeModel;
DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
@@ -57,14 +57,14 @@ typedef struct OVModel{
ie_executable_network_t *exe_network;
SafeQueue *request_queue; // holds OVRequestItem
Queue *task_queue; // holds TaskItem
- Queue *inference_queue; // holds InferenceItem
+ Queue *lltask_queue; // holds LastLevelTaskItem
} OVModel;
// one request for one call to openvino
typedef struct OVRequestItem {
ie_infer_request_t *infer_request;
- InferenceItem **inferences;
- uint32_t inference_count;
+ LastLevelTaskItem **lltasks;
+ uint32_t lltask_count;
ie_complete_call_back_t callback;
} OVRequestItem;
@@ -121,12 +121,12 @@ static DNNReturnType fill_model_input_ov(OVModel *ov_model, OVRequestItem *reque
IEStatusCode status;
DNNData input;
ie_blob_t *input_blob = NULL;
- InferenceItem *inference;
+ LastLevelTaskItem *lltask;
TaskItem *task;
- inference = ff_queue_peek_front(ov_model->inference_queue);
- av_assert0(inference);
- task = inference->task;
+ lltask = ff_queue_peek_front(ov_model->lltask_queue);
+ av_assert0(lltask);
+ task = lltask->task;
status = ie_infer_request_get_blob(request->infer_request, task->input_name, &input_blob);
if (status != OK) {
@@ -159,13 +159,13 @@ static DNNReturnType fill_model_input_ov(OVModel *ov_model, OVRequestItem *reque
input.order = DCO_BGR;
for (int i = 0; i < ctx->options.batch_size; ++i) {
- inference = ff_queue_pop_front(ov_model->inference_queue);
- if (!inference) {
+ lltask = ff_queue_pop_front(ov_model->lltask_queue);
+ if (!lltask) {
break;
}
- request->inferences[i] = inference;
- request->inference_count = i + 1;
- task = inference->task;
+ request->lltasks[i] = lltask;
+ request->lltask_count = i + 1;
+ task = lltask->task;
switch (ov_model->model->func_type) {
case DFT_PROCESS_FRAME:
if (task->do_ioproc) {
@@ -180,7 +180,7 @@ static DNNReturnType fill_model_input_ov(OVModel *ov_model, OVRequestItem *reque
ff_frame_to_dnn_detect(task->in_frame, &input, ctx);
break;
case DFT_ANALYTICS_CLASSIFY:
- ff_frame_to_dnn_classify(task->in_frame, &input, inference->bbox_index, ctx);
+ ff_frame_to_dnn_classify(task->in_frame, &input, lltask->bbox_index, ctx);
break;
default:
av_assert0(!"should not reach here");
@@ -200,8 +200,8 @@ static void infer_completion_callback(void *args)
precision_e precision;
IEStatusCode status;
OVRequestItem *request = args;
- InferenceItem *inference = request->inferences[0];
- TaskItem *task = inference->task;
+ LastLevelTaskItem *lltask = request->lltasks[0];
+ TaskItem *task = lltask->task;
OVModel *ov_model = task->model;
SafeQueue *requestq = ov_model->request_queue;
ie_blob_t *output_blob = NULL;
@@ -248,10 +248,10 @@ static void infer_completion_callback(void *args)
output.dt = precision_to_datatype(precision);
output.data = blob_buffer.buffer;
- av_assert0(request->inference_count <= dims.dims[0]);
- av_assert0(request->inference_count >= 1);
- for (int i = 0; i < request->inference_count; ++i) {
- task = request->inferences[i]->task;
+ av_assert0(request->lltask_count <= dims.dims[0]);
+ av_assert0(request->lltask_count >= 1);
+ for (int i = 0; i < request->lltask_count; ++i) {
+ task = request->lltasks[i]->task;
task->inference_done++;
switch (ov_model->model->func_type) {
@@ -279,20 +279,20 @@ static void infer_completion_callback(void *args)
av_log(ctx, AV_LOG_ERROR, "classify filter needs to provide post proc\n");
return;
}
- ov_model->model->classify_post_proc(task->out_frame, &output, request->inferences[i]->bbox_index, ov_model->model->filter_ctx);
+ ov_model->model->classify_post_proc(task->out_frame, &output, request->lltasks[i]->bbox_index, ov_model->model->filter_ctx);
break;
default:
av_assert0(!"should not reach here");
break;
}
- av_freep(&request->inferences[i]);
+ av_freep(&request->lltasks[i]);
output.data = (uint8_t *)output.data
+ output.width * output.height * output.channels * get_datatype_size(output.dt);
}
ie_blob_free(&output_blob);
- request->inference_count = 0;
+ request->lltask_count = 0;
if (ff_safe_queue_push_back(requestq, request) < 0) {
ie_infer_request_free(&request->infer_request);
av_freep(&request);
@@ -399,11 +399,11 @@ static DNNReturnType init_model_ov(OVModel *ov_model, const char *input_name, co
goto err;
}
- item->inferences = av_malloc_array(ctx->options.batch_size, sizeof(*item->inferences));
- if (!item->inferences) {
+ item->lltasks = av_malloc_array(ctx->options.batch_size, sizeof(*item->lltasks));
+ if (!item->lltasks) {
goto err;
}
- item->inference_count = 0;
+ item->lltask_count = 0;
}
ov_model->task_queue = ff_queue_create();
@@ -411,8 +411,8 @@ static DNNReturnType init_model_ov(OVModel *ov_model, const char *input_name, co
goto err;
}
- ov_model->inference_queue = ff_queue_create();
- if (!ov_model->inference_queue) {
+ ov_model->lltask_queue = ff_queue_create();
+ if (!ov_model->lltask_queue) {
goto err;
}
@@ -427,7 +427,7 @@ static DNNReturnType execute_model_ov(OVRequestItem *request, Queue *inferenceq)
{
IEStatusCode status;
DNNReturnType ret;
- InferenceItem *inference;
+ LastLevelTaskItem *lltask;
TaskItem *task;
OVContext *ctx;
OVModel *ov_model;
@@ -438,8 +438,8 @@ static DNNReturnType execute_model_ov(OVRequestItem *request, Queue *inferenceq)
return DNN_SUCCESS;
}
- inference = ff_queue_peek_front(inferenceq);
- task = inference->task;
+ lltask = ff_queue_peek_front(inferenceq);
+ task = lltask->task;
ov_model = task->model;
ctx = &ov_model->ctx;
@@ -567,21 +567,21 @@ static int contain_valid_detection_bbox(AVFrame *frame)
return 1;
}
-static DNNReturnType extract_inference_from_task(DNNFunctionType func_type, TaskItem *task, Queue *inference_queue, DNNExecBaseParams *exec_params)
+static DNNReturnType extract_lltask_from_task(DNNFunctionType func_type, TaskItem *task, Queue *lltask_queue, DNNExecBaseParams *exec_params)
{
switch (func_type) {
case DFT_PROCESS_FRAME:
case DFT_ANALYTICS_DETECT:
{
- InferenceItem *inference = av_malloc(sizeof(*inference));
- if (!inference) {
+ LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask));
+ if (!lltask) {
return DNN_ERROR;
}
task->inference_todo = 1;
task->inference_done = 0;
- inference->task = task;
- if (ff_queue_push_back(inference_queue, inference) < 0) {
- av_freep(&inference);
+ lltask->task = task;
+ if (ff_queue_push_back(lltask_queue, lltask) < 0) {
+ av_freep(&lltask);
return DNN_ERROR;
}
return DNN_SUCCESS;
@@ -604,7 +604,7 @@ static DNNReturnType extract_inference_from_task(DNNFunctionType func_type, Task
header = (const AVDetectionBBoxHeader *)sd->data;
for (uint32_t i = 0; i < header->nb_bboxes; i++) {
- InferenceItem *inference;
+ LastLevelTaskItem *lltask;
const AVDetectionBBox *bbox = av_get_detection_bbox(header, i);
if (params->target) {
@@ -613,15 +613,15 @@ static DNNReturnType extract_inference_from_task(DNNFunctionType func_type, Task
}
}
- inference = av_malloc(sizeof(*inference));
- if (!inference) {
+ lltask = av_malloc(sizeof(*lltask));
+ if (!lltask) {
return DNN_ERROR;
}
task->inference_todo++;
- inference->task = task;
- inference->bbox_index = i;
- if (ff_queue_push_back(inference_queue, inference) < 0) {
- av_freep(&inference);
+ lltask->task = task;
+ lltask->bbox_index = i;
+ if (ff_queue_push_back(lltask_queue, lltask) < 0) {
+ av_freep(&lltask);
return DNN_ERROR;
}
}
@@ -679,8 +679,8 @@ static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu
return DNN_ERROR;
}
- if (extract_inference_from_task(ov_model->model->func_type, &task, ov_model->inference_queue, NULL) != DNN_SUCCESS) {
- av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
+ if (extract_lltask_from_task(ov_model->model->func_type, &task, ov_model->lltask_queue, NULL) != DNN_SUCCESS) {
+ av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
ret = DNN_ERROR;
goto err;
}
@@ -692,7 +692,7 @@ static DNNReturnType get_output_ov(void *model, const char *input_name, int inpu
goto err;
}
- ret = execute_model_ov(request, ov_model->inference_queue);
+ ret = execute_model_ov(request, ov_model->lltask_queue);
*output_width = task.out_frame->width;
*output_height = task.out_frame->height;
err:
@@ -794,20 +794,20 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNExecBaseParams *
return DNN_ERROR;
}
- if (extract_inference_from_task(model->func_type, task, ov_model->inference_queue, exec_params) != DNN_SUCCESS) {
+ if (extract_lltask_from_task(model->func_type, task, ov_model->lltask_queue, exec_params) != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
return DNN_ERROR;
}
if (ctx->options.async) {
- while (ff_queue_size(ov_model->inference_queue) >= ctx->options.batch_size) {
+ while (ff_queue_size(ov_model->lltask_queue) >= ctx->options.batch_size) {
request = ff_safe_queue_pop_front(ov_model->request_queue);
if (!request) {
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
return DNN_ERROR;
}
- ret = execute_model_ov(request, ov_model->inference_queue);
+ ret = execute_model_ov(request, ov_model->lltask_queue);
if (ret != DNN_SUCCESS) {
return ret;
}
@@ -832,7 +832,7 @@ DNNReturnType ff_dnn_execute_model_ov(const DNNModel *model, DNNExecBaseParams *
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
return DNN_ERROR;
}
- return execute_model_ov(request, ov_model->inference_queue);
+ return execute_model_ov(request, ov_model->lltask_queue);
}
}
@@ -850,7 +850,7 @@ DNNReturnType ff_dnn_flush_ov(const DNNModel *model)
IEStatusCode status;
DNNReturnType ret;
- if (ff_queue_size(ov_model->inference_queue) == 0) {
+ if (ff_queue_size(ov_model->lltask_queue) == 0) {
// no pending task need to flush
return DNN_SUCCESS;
}
@@ -889,16 +889,16 @@ void ff_dnn_free_model_ov(DNNModel **model)
if (item && item->infer_request) {
ie_infer_request_free(&item->infer_request);
}
- av_freep(&item->inferences);
+ av_freep(&item->lltasks);
av_freep(&item);
}
ff_safe_queue_destroy(ov_model->request_queue);
- while (ff_queue_size(ov_model->inference_queue) != 0) {
- InferenceItem *item = ff_queue_pop_front(ov_model->inference_queue);
+ while (ff_queue_size(ov_model->lltask_queue) != 0) {
+ LastLevelTaskItem *item = ff_queue_pop_front(ov_model->lltask_queue);
av_freep(&item);
}
- ff_queue_destroy(ov_model->inference_queue);
+ ff_queue_destroy(ov_model->lltask_queue);
while (ff_queue_size(ov_model->task_queue) != 0) {
TaskItem *item = ff_queue_pop_front(ov_model->task_queue);
@@ -58,7 +58,7 @@ typedef struct TFModel{
TF_Session *session;
TF_Status *status;
SafeQueue *request_queue;
- Queue *inference_queue;
+ Queue *lltask_queue;
Queue *task_queue;
} TFModel;
@@ -75,7 +75,7 @@ typedef struct TFInferRequest {
typedef struct TFRequestItem {
TFInferRequest *infer_request;
- InferenceItem *inference;
+ LastLevelTaskItem *lltask;
TF_Status *status;
DNNAsyncExecModule exec_module;
} TFRequestItem;
@@ -90,7 +90,7 @@ static const AVOption dnn_tensorflow_options[] = {
AVFILTER_DEFINE_CLASS(dnn_tensorflow);
-static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_queue);
+static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *lltask_queue);
static void infer_completion_callback(void *args);
static inline void destroy_request_item(TFRequestItem **arg);
@@ -158,8 +158,8 @@ static DNNReturnType tf_start_inference(void *args)
{
TFRequestItem *request = args;
TFInferRequest *infer_request = request->infer_request;
- InferenceItem *inference = request->inference;
- TaskItem *task = inference->task;
+ LastLevelTaskItem *lltask = request->lltask;
+ TaskItem *task = lltask->task;
TFModel *tf_model = task->model;
if (!request) {
@@ -196,27 +196,27 @@ static inline void destroy_request_item(TFRequestItem **arg) {
request = *arg;
tf_free_request(request->infer_request);
av_freep(&request->infer_request);
- av_freep(&request->inference);
+ av_freep(&request->lltask);
TF_DeleteStatus(request->status);
ff_dnn_async_module_cleanup(&request->exec_module);
av_freep(arg);
}
-static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue)
+static DNNReturnType extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
{
TFModel *tf_model = task->model;
TFContext *ctx = &tf_model->ctx;
- InferenceItem *inference = av_malloc(sizeof(*inference));
- if (!inference) {
- av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for InferenceItem\n");
+ LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask));
+ if (!lltask) {
+ av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n");
return DNN_ERROR;
}
task->inference_todo = 1;
task->inference_done = 0;
- inference->task = task;
- if (ff_queue_push_back(inference_queue, inference) < 0) {
- av_log(ctx, AV_LOG_ERROR, "Failed to push back inference_queue.\n");
- av_freep(&inference);
+ lltask->task = task;
+ if (ff_queue_push_back(lltask_queue, lltask) < 0) {
+ av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
+ av_freep(&lltask);
return DNN_ERROR;
}
return DNN_SUCCESS;
@@ -333,7 +333,7 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
goto err;
}
- if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) {
+ if (extract_lltask_from_task(&task, tf_model->lltask_queue) != DNN_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
ret = DNN_ERROR;
goto err;
@@ -346,7 +346,7 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu
goto err;
}
- ret = execute_model_tf(request, tf_model->inference_queue);
+ ret = execute_model_tf(request, tf_model->lltask_queue);
*output_width = task.out_frame->width;
*output_height = task.out_frame->height;
@@ -901,7 +901,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
if (!item) {
goto err;
}
- item->inference = NULL;
+ item->lltask = NULL;
item->infer_request = tf_create_inference_request();
if (!item->infer_request) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for TensorFlow inference request\n");
@@ -919,8 +919,8 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_
}
}
- tf_model->inference_queue = ff_queue_create();
- if (!tf_model->inference_queue) {
+ tf_model->lltask_queue = ff_queue_create();
+ if (!tf_model->lltask_queue) {
goto err;
}
@@ -944,15 +944,15 @@ err:
static DNNReturnType fill_model_input_tf(TFModel *tf_model, TFRequestItem *request) {
DNNData input;
- InferenceItem *inference;
+ LastLevelTaskItem *lltask;
TaskItem *task;
TFInferRequest *infer_request;
TFContext *ctx = &tf_model->ctx;
- inference = ff_queue_pop_front(tf_model->inference_queue);
- av_assert0(inference);
- task = inference->task;
- request->inference = inference;
+ lltask = ff_queue_pop_front(tf_model->lltask_queue);
+ av_assert0(lltask);
+ task = lltask->task;
+ request->lltask = lltask;
if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) {
goto err;
@@ -1030,8 +1030,8 @@ err:
static void infer_completion_callback(void *args) {
TFRequestItem *request = args;
- InferenceItem *inference = request->inference;
- TaskItem *task = inference->task;
+ LastLevelTaskItem *lltask = request->lltask;
+ TaskItem *task = lltask->task;
DNNData *outputs;
TFInferRequest *infer_request = request->infer_request;
TFModel *tf_model = task->model;
@@ -1086,20 +1086,20 @@ err:
}
}
-static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *inference_queue)
+static DNNReturnType execute_model_tf(TFRequestItem *request, Queue *lltask_queue)
{
TFModel *tf_model;
TFContext *ctx;
- InferenceItem *inference;
+ LastLevelTaskItem *lltask;
TaskItem *task;
- if (ff_queue_size(inference_queue) == 0) {
+ if (ff_queue_size(lltask_queue) == 0) {
destroy_request_item(&request);
return DNN_SUCCESS;
}
- inference = ff_queue_peek_front(inference_queue);
- task = inference->task;
+ lltask = ff_queue_peek_front(lltask_queue);
+ task = lltask->task;
tf_model = task->model;
ctx = &tf_model->ctx;
@@ -1155,8 +1155,8 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *
return DNN_ERROR;
}
- if (extract_inference_from_task(task, tf_model->inference_queue) != DNN_SUCCESS) {
- av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n");
+ if (extract_lltask_from_task(task, tf_model->lltask_queue) != DNN_SUCCESS) {
+ av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
return DNN_ERROR;
}
@@ -1165,7 +1165,7 @@ DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *
av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
return DNN_ERROR;
}
- return execute_model_tf(request, tf_model->inference_queue);
+ return execute_model_tf(request, tf_model->lltask_queue);
}
DNNAsyncStatusType ff_dnn_get_result_tf(const DNNModel *model, AVFrame **in, AVFrame **out)
@@ -1181,7 +1181,7 @@ DNNReturnType ff_dnn_flush_tf(const DNNModel *model)
TFRequestItem *request;
DNNReturnType ret;
- if (ff_queue_size(tf_model->inference_queue) == 0) {
+ if (ff_queue_size(tf_model->lltask_queue) == 0) {
// no pending task need to flush
return DNN_SUCCESS;
}
@@ -1216,11 +1216,11 @@ void ff_dnn_free_model_tf(DNNModel **model)
}
ff_safe_queue_destroy(tf_model->request_queue);
- while (ff_queue_size(tf_model->inference_queue) != 0) {
- InferenceItem *item = ff_queue_pop_front(tf_model->inference_queue);
+ while (ff_queue_size(tf_model->lltask_queue) != 0) {
+ LastLevelTaskItem *item = ff_queue_pop_front(tf_model->lltask_queue);
av_freep(&item);
}
- ff_queue_destroy(tf_model->inference_queue);
+ ff_queue_destroy(tf_model->lltask_queue);
while (ff_queue_size(tf_model->task_queue) != 0) {
TaskItem *item = ff_queue_pop_front(tf_model->task_queue);
This patch renames the InferenceItem to LastLevelTaskItem in the three backends to avoid confusion among the meanings of these structs. The following are the renames done in this patch: 1. extract_inference_from_task -> extract_lltask_from_task 2. InferenceItem -> LastLevelTaskItem 3. inference_queue -> lltask_queue 4. inference -> lltask 5. inference_count -> lltask_count Signed-off-by: Shubhanshu Saxena <shubhanshu.e01@gmail.com> --- libavfilter/dnn/dnn_backend_common.h | 4 +- libavfilter/dnn/dnn_backend_native.c | 58 ++++++------- libavfilter/dnn/dnn_backend_native.h | 2 +- libavfilter/dnn/dnn_backend_openvino.c | 110 ++++++++++++------------- libavfilter/dnn/dnn_backend_tf.c | 76 ++++++++--------- 5 files changed, 125 insertions(+), 125 deletions(-)